Why?

HOCKEY The time it will take for a puck hit from the blue line to reach the goal line is given by the rational expression \(\frac{64}{x} \), where \(x \) is the speed of the puck in feet per seconds. If a player hits the puck at 100 miles per hour, the puck will reach the goal line in 0.34 second.

In Chapter 7, you simplified expressions involving monomials and polynomials.

In Chapter 11, you will:
- Identify and graph inverse variations.
- Identify excluded values of rational functions.
- Multiply, divide, and add rational expressions.
- Divide polynomials.
- Solve rational equations.

KY Program of Studies

HS-AT-S-VEO11 Students will add, subtract, multiply, divide and simplify rational expressions.

HS-AT-S-VEO7 Students will divide a polynomial by a first-degree polynomial.

Math in Motion, Animation glencoe.com
Solve each proportion. (Lesson 2-6)

1. \(\frac{y}{3} = \frac{8}{9} \)
2. \(\frac{5}{12} = \frac{x}{36} \)
3. \(\frac{7}{2} = \frac{y}{3} \)
4. \(\frac{5}{x} = \frac{10}{4} \)

5. **DRAWING** Rosie is making a scale drawing. She is using the scale 1 inch = 3 feet. How many inches will represent 10 feet?

EXAMPLE 1

Find the greatest common factor of 30 and 42.

2 \cdot 3 \cdot 5 \quad \Rightarrow \quad \text{Prime factorization of 30}
2 \cdot 3 \cdot 7
2 \cdot 3 = 6 \quad \Rightarrow \quad \text{Product of the common factors}

The greatest common factor of 30 and 42 is 6.

EXAMPLE 2

Find the greatest common factor of 30 and 42.

2 \cdot 3 \cdot 5 \quad \Rightarrow \quad \text{Prime factorization of 30}
2 \cdot 3 \cdot 7 \quad \Rightarrow \quad \text{Prime factorization of 42}
2 \cdot 3 = 6 \quad \Rightarrow \quad \text{Product of the common factors}

The greatest common factor of 30 and 42 is 6.

EXAMPLE 3

Factor each polynomial. (Lessons 8-2 and 8-4)

11. \(2x^2 - 4x \)
12. \(6x^2 - 5x - 4 \)
13. \(6xy + 15x \)
14. \(2c^2d - 4c^2d^2 \)

EXAMPLE 3

Factor \(x^2 + 4x - 45. \)

In this trinomial, \(b = 4 \) and \(c = -45. \) Find factors of \(-45\) with a sum of \(4.\) The correct factors are \(-5\) and \(9.\)

\(x^2 + 4x - 45 \)
\(= (x - m)(x + p) \quad \Rightarrow \quad \text{Write the pattern.} \)
\(= (x - 5)(x + 9) \quad \Rightarrow \quad m = -5 \text{ and } p = 9 \)
Get Started on Chapter 11

You will learn several new concepts, skills, and vocabulary terms as you study Chapter 11. To get ready, identify important terms and organize your resources. You may wish to refer to Chapter 0 to review prerequisite skills.

Foldables Study Organizer

Rational Functions and Equations Make this Foldable to help you organize your Chapter 11 notes about rational functions and equations. Begin with 3 sheets of notebook paper.

1. **Take** one sheet of paper and fold in half along the width. Cut 1 inch slits on each side of the paper.

2. **Stack** the two sheets of paper and fold in half along the width. Cut a slit through the center stopping 1 inch from each side.

3. **Insert** the first sheet through the second sheets and align the folds to form a booklet. Label the cover with the chapter title.

New Vocabulary

<table>
<thead>
<tr>
<th>English</th>
<th>Español</th>
</tr>
</thead>
<tbody>
<tr>
<td>inverse variation • p. 670 • variación inversa</td>
<td></td>
</tr>
<tr>
<td>product rule • p. 671 • regla del producto</td>
<td></td>
</tr>
<tr>
<td>excluded value • p. 678 • valores excluidos</td>
<td></td>
</tr>
<tr>
<td>rational function • p. 678 • función racional</td>
<td></td>
</tr>
<tr>
<td>asymptote • p. 679 • asintota</td>
<td></td>
</tr>
<tr>
<td>rational expression • p. 684 • expresión racional</td>
<td></td>
</tr>
<tr>
<td>least common multiple (LCM) • p. 707 • mínimo común múltiplo (mcm)</td>
<td></td>
</tr>
<tr>
<td>least common denominator (LCD) • p. 708 • mínimo común denominador (mcd)</td>
<td></td>
</tr>
<tr>
<td>complex fraction • p. 714 • fracción compleja</td>
<td></td>
</tr>
<tr>
<td>mixed expression • p. 714 • expresión mixta</td>
<td></td>
</tr>
<tr>
<td>rational equation • p. 720 • ecuación racional</td>
<td></td>
</tr>
<tr>
<td>extraneous solutions • p. 721 • soluciones extrañas</td>
<td></td>
</tr>
<tr>
<td>work problems • p. 722 • problemas de trabajo</td>
<td></td>
</tr>
<tr>
<td>rate problems • p. 723 • problemas de tasas</td>
<td></td>
</tr>
</tbody>
</table>

Review Vocabulary

- direct variation • p. 180 • variación directa an equation of the form \(y = kx \), where \(k \neq 0 \)

Quotient of Powers • p. 408 • cociente de potencia

\[
\frac{a^m}{a^n} = a^{m-n}
\]

- \(\frac{x^5}{x^3} = \frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x} = x \cdot x \) or \(x^2 \)
- \(\frac{x^5}{x^2} = x^5 \div x^2 \) or \(x^3 \)

Zero Product Property • p. 478 • propiedad del producto de cero if the product of two factors is 0, then at least one of the factors must be 0

KY Math Online glencoe.com

- Study the chapter online
- Explore Math in Motion
- Get extra help from your own Personal Tutor
- Use Extra Examples for additional help
- Take a Self-Check Quiz
- Review Vocabulary in fun ways

668 Chapter 11 Rational Functions and Equations
You can use a data collection device to investigate the relationship between volume and pressure.

Set Up The Lab

- Connect a syringe to the gas pressure sensor. Then connect the data collection device to both the sensor and the calculator as shown.
- Start the collection program and select the sensor.

ACTIVITY

Collect Data

Step 1 Open the valve between the atmosphere and the syringe. Set the inside ring of the syringe to 20 mL and close the valve. This ensures that the amount of air inside the syringe will be constant throughout the experiment.

Step 2 Press the plunger of the syringe to the 5 mL mark. Wait for the pressure gauge to stop changing, then take the data reading. Enter 5 as the volume in the calculator. The pressure is measured in atmospheres (atm).

Step 3 Repeat step 2, pressing the plunger to 7.5 mL, 10.0 mL, 12.5 mL, 15.0 mL, 17.5 mL, and 20.0 mL. Record the volume from each data reading.

Step 4 After taking the last data reading, use STAT PLOT to create a line graph.

Exercises

1. Does the pressure vary directly as the volume? Explain.
2. As the volume changes from 10 to 20 mL, what happens to the pressure?
3. Predict what the pressure of the gas in the syringe would be if the volume increased to 40 mL.
4. Add a column to the data table to find the product of the volume and the pressure for each data reading. What pattern do you observe?
5. **MAKE A CONJECTURE** The relationship between the pressure and volume of a gas is called Boyle’s Law. Write an equation relating the volume v in milliliters and pressure p in atmospheres in your experiment. Compare your conjecture to two classmates’. Formulate mathematical questions about their conjectures.
Inverse Variation

Why?

The time it takes a runner to finish a race is inversely proportional to the average pace of the runner.

Identify and Use Inverse Variations

In the situation above, the runner’s time decreases as the pace of the runner increases. So, these quantities are inversely proportional. An inverse variation can be represented by the equation \(y = \frac{k}{x} \) or \(xy = k \).

Key Concept

\(y \) varies inversely as \(x \) if there is some nonzero constant \(k \) such that \(y = \frac{k}{x} \) or \(xy = k \), where \(x \neq 0 \) and \(y \neq 0 \).

In an inverse variation, the product of two values remains constant. Recall that a relationship of the form \(y = kx \) is a direct variation. For either a direct or indirect variations, the constant \(k \) is called the constant of variation or the constant of proportionality.

EXAMPLE 1
Identify Inverse and Direct Variations

Determine whether each table or equation represents an inverse or a direct variation. Explain.

a. The equation can be written as \(y = \frac{1}{2} x \). Therefore, it represents a direct variation.

b. Notice that \(xy \) is not constant. So, the table does not represent an indirect variation.

c. The product is constant, so the table represents an inverse variation.

d. Write the equation.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
1 \cdot 16 = 16 \\
2 \cdot 8 = 16 \\
4 \cdot 4 = 16
\]

The product is constant, so the table represents an inverse variation.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

\[
3 = k(1) \\
6 = k(2) \\
9 = k(3)
\]

Write the equation.

\[
2xy = 10 \\
xy = 5
\]

The equation represents an inverse variation.

1A. Complete the table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

1B. \(-2x = y \)
You can use \(xy = k \) to write an inverse variation equation that relates \(x \) and \(y \).

EXAMPLE 2 Write an Inverse Variation

Assume that \(y \) varies inversely as \(x \). If \(y = 18 \) when \(x = 2 \), write an inverse variation equation that relates \(x \) and \(y \).

\[
xy = k \\
2(18) = k \\
36 = k
\]

The constant of variation is 36. So, an equation that relates \(x \) and \(y \) is \(xy = 36 \) or \(y = \frac{36}{x} \).

Check Your Progress

2. Assume that \(y \) varies inversely as \(x \). If \(y = 5 \) when \(x = -4 \), write an inverse variation equation that relates \(x \) and \(y \).

If \((x_1, y_1) \) and \((x_2, y_2) \) are solutions of an inverse variation, then \(x_1y_1 = k \) and \(x_2y_2 = k \).

\[
x_1y_1 = k \quad \text{and} \quad x_2y_2 = k \\
x_1y_1 = x_2y_2 \\
\text{Substitute } x_2y_2 \text{ for } k.
\]

The equation \(x_1y_1 = x_2y_2 \) is called the product rule for inverse variations.

Key Concept Product Rule for Inverse Variations

Words

If \((x_1, y_1) \) and \((x_2, y_2) \) are solutions of an inverse variation, then the products \(x_1y_1 \) and \(x_2y_2 \) are equal.

Symbols

\[
x_1y_1 = x_2y_2 \quad \text{or} \quad \frac{x_1}{y_1} = \frac{x_2}{y_2}
\]

EXAMPLE 3 Solve for \(x \) or \(y \)

Assume that \(y \) varies inversely as \(x \). If \(y = 3 \) when \(x = 12 \), find \(x \) when \(y = 4 \).

\[
x_1y_1 = x_2y_2 \quad \text{Product rule for inverse variations} \\
12 \cdot 3 = x_2 \cdot 4 \quad x_1 = 12, \ y_1 = 3, \ and \ y_2 = 4 \\
36 = x_2 \cdot 4 \quad \text{Simplify.} \\
9 = x_2 \quad \text{Divide each side by 4.} \\
\]

So, when \(y = 4 \), \(x = 9 \).

Check Your Progress

3. If \(y \) varies inversely as \(x \) and \(y = 4 \) when \(x = -8 \), find \(y \) when \(x = -4 \).

The product rule for inverse variations can be used to write an equation to solve real-world problems.
EXAMPLE 4 Use Inverse Variations

PHYSICS The acceleration a of a hockey puck is inversely proportional to its mass m. Suppose a hockey puck with a mass of 164 grams is hit so that it accelerates 122 m/s2. Find the acceleration of a hockey puck that has a mass of 158 grams if the same amount of force is applied.

You can make a table to organize the information.

Let $m_1 = 164$, $a_1 = 122$, and $m_2 = 158$. Solve for a_2.

$$m_1 a_1 = m_2 a_2$$

Use the product rule to write an equation.

$$164 \cdot 122 = 158 a_2$$

$m_1 = 164$, $a_1 = 122$, and $m_2 = 158$

Simplify.

$$20,008 = 158a_2$$

Divide each side by 158 and simplify.

$$126.6 \approx a_2$$

The 158-gram puck has an acceleration of approximately 126.6 m/s2.

Check Your Progress

4. RACING Manuel runs an average of 8 miles per hour and finishes a race in 0.39 hour. Dyani finished the race in 0.35 hour. What was her average pace?

Graph Inverse Variations The graph of an inverse variation is not a straight line like the graph of a direct variation.

EXAMPLE 5 Graph an Inverse Variation

Graph an inverse variation equation in which $y = 8$ when $x = 3$.

Step 1 Write an inverse variation equation.

$$xy = k$$

Inverse variation equation

$$3(8) = k$$

$x = 3$, $y = 8$

Simplify.

$$24 = k$$

The inverse variation equation is $xy = 24$ or $y = \frac{24}{x}$.

Step 2 Choose values for x and y that have a product of 24.

Step 3 Plot each point and draw a smooth curve that connects the points.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12</td>
<td>-2</td>
</tr>
<tr>
<td>-8</td>
<td>-3</td>
</tr>
<tr>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>-2</td>
<td>-12</td>
</tr>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

Notice that since y is undefined when $x = 0$, there is no point on the graph when $x = 0$. This graph is called a hyperbola.

Check Your Progress

5. Graph an inverse variation equation in which $y = 16$ when $x = 4$.

Personal Tutor glencoe.com
Lesson 11-1
Inverse Variation

Check Your Understanding

Example 1
p. 670
Determine whether each table or equation represents an inverse or a direct variation. Explain.

1. \(\begin{align*}
x & : 1 \quad 4 \quad 8 \quad 12 \\
y & : 2 \quad 8 \quad 16 \quad 24
\end{align*} \)

2. \(\begin{align*}
x & : 1 \quad 2 \quad 3 \quad 4 \\
y & : 24 \quad 12 \quad 8 \quad 6
\end{align*} \)

3. \(xy = 4 \)

4. \(y = \frac{x}{10} \)

Examples 2 and 5
pp. 671–672
Assume that \(y \) varies inversely as \(x \). Write an inverse variation equation that relates \(x \) and \(y \). Then graph the equation.

5. \(y = 8 \) when \(x = 6 \)
6. \(y = 2 \) when \(x = 5 \)
7. \(y = 3 \) when \(x = -10 \)
8. \(y = -1 \) when \(x = -12 \)

Example 3
p. 671
Solve. Assume that \(y \) varies inversely as \(x \).

9. If \(y = 8 \) when \(x = 4 \), find \(x \) when \(y = 2 \).
10. If \(y = 7 \) when \(x = 6 \), find \(y \) when \(x = -21 \).
11. If \(y = -5 \) when \(x = 9 \), find \(y \) when \(x = 6 \).

Example 4
p. 672
12. RACING The time it takes to complete a go-cart race course is inversely proportional to the average speed of the go-cart. One rider has an average speed of 73.3 feet per second and completes the course in 30 seconds. Another rider completes the course in 25 seconds. What was the average speed of the second rider?

13. OPTOMETRY When a person does not have clear vision, an optometrist can prescribe lenses to correct the condition. The power \(P \) of a lens, in a unit called diopters, is equal to 1 divided by the focal length \(f \), in meters, of the lens.

a. Graph the inverse variation \(P = \frac{1}{f} \).

b. Find the powers of lenses with focal lengths +0.2 to −0.4 meters.
Determine whether each table or equation represents an inverse or a direct variation. Explain.

- **Example 1**: p. 670

 14. \[\begin{array}{c|c}
 x & y \\
 \hline
 1 & 30 \\
 2 & 15 \\
 5 & 6 \\
 6 & 5 \\
 \end{array} \]

 15. \[\begin{array}{c|c}
 x & y \\
 \hline
 2 & -6 \\
 3 & -9 \\
 4 & -12 \\
 5 & -15 \\
 \end{array} \]

 16. \[\begin{array}{c|c}
 x & y \\
 \hline
 -4 & -2 \\
 -2 & -1 \\
 2 & 1 \\
 4 & 2 \\
 \end{array} \]

 17. \[\begin{array}{c|c}
 x & y \\
 \hline
 -5 & 8 \\
 -2 & 20 \\
 2 & -10 \\
 8 & -5 \\
 \end{array} \]

- **Examples 2 and 5**: pp. 671–672

 18. \[5x - y = 0 \]

 19. \[xy = \frac{1}{4} \]

 20. \[x = 14y \]

 21. \[\frac{y}{x} = 9 \]

Assume that \(y \) varies inversely as \(x \). Write an inverse variation equation that relates \(x \) and \(y \). Then graph the equation.

- **Example 3**: p. 671

 22. \(y = 2 \) when \(x = 20 \)

 23. \(y = 18 \) when \(x = 4 \)

 24. \(y = -6 \) when \(x = -3 \)

 25. \(y = -4 \) when \(x = -3 \)

 26. \(y = -4 \) when \(x = 16 \)

 27. \(y = 12 \) when \(x = -9 \)

Solve. Assume that \(y \) varies inversely as \(x \).

- **Example 4**: p. 672

 28. If \(y = 12 \) when \(x = 3 \), find \(x \) when \(y = 6 \).

 29. If \(y = 5 \) when \(x = 6 \), find \(x \) when \(y = 2 \).

 30. If \(y = 4 \) when \(x = 14 \), find \(x \) when \(y = -5 \).

 31. If \(y = 9 \) when \(x = 9 \), find \(y \) when \(x = -27 \).

 32. If \(y = 15 \) when \(x = -2 \), find \(y \) when \(x = 3 \).

 33. If \(y = -8 \) when \(x = -12 \), find \(y \) when \(x = 10 \).

EARTH SCIENCE The water level in a river varies inversely with air temperature. When the air temperature was 90° Fahrenheit, the water level was 11 feet. If the air temperature was 110° Fahrenheit, what was the level of water in the river?

MUSIC When under equal tension, the frequency of a vibrating string from a piano varies inversely with the string length. If a string that is 420 millimeters in length vibrates at a frequency of 523 cycles a second, at what frequency will a 707-millimeter string vibrate?

Determine whether each situation is an example of an inverse or a direct variation. Justify your reasoning.

- **36.** The drama club can afford to purchase 10 wigs at $2 each or 5 wigs at $4 each.
- **37.** The Spring family buys several lemonades for $1.50 each.
- **38.** Nicole earns $14 for babysitting 2 hours, and $21 for babysitting 3 hours.
- **39.** Thirty video game tokens are divided evenly among a group of friends.

Determine whether each table or graph represents an inverse or a direct variation. Explain.

- **40.**

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1.6</td>
</tr>
<tr>
<td>11</td>
<td>2.2</td>
</tr>
</tbody>
</table>

- **41.**

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-7</td>
</tr>
<tr>
<td>-2</td>
<td>-10.5</td>
</tr>
<tr>
<td>4</td>
<td>5.25</td>
</tr>
</tbody>
</table>

- **42.**

 Graph: A curve showing an inverse variation.

- **43.**

 Graph: A straight line showing a direct variation.
44. **PHYSICAL SCIENCE** When two people are balanced on a seesaw, their distances from the center of the seesaw are inversely proportional to their weights. If a 118-pound person sits 1.8 meters from the center of the seesaw, how far should a 125-pound person sit from the center to balance the seesaw?

Solve. Assume that \(y \) varies inversely as \(x \).

45. If \(y = 9.2 \) when \(x = 6 \), find \(x \) when \(y = 3 \).

46. If \(y = 3.8 \) when \(x = 1.5 \), find \(x \) when \(y = 0.3 \).

47. If \(y = \frac{1}{5} \) when \(x = -20 \), find \(y \) when \(x = -\frac{8}{5} \).

48. If \(y = -6.3 \) when \(x = \frac{2}{3} \), find \(y \) when \(x = 8 \).

49. **SWIMMING** Logan and Brianna each bought a pool membership. Their average cost per day is inversely proportional to the number of days that they go to the pool. Logan went to the pool 25 days for an average cost per day of $5.60. Brianna went to the pool 35 days. What was her average cost per day?

50. **PHYSICAL SCIENCE** The amount of force required to do a certain amount of work in moving an object is inversely proportional to the distance that the object is moved. Suppose 90 N of force is required to move an object 10 feet. Find the force needed to move another object 15 feet if the same amount of work is done.

51. **DRIVING** Lina must practice driving 40 hours with a parent or guardian before she is allowed to take the test to get her driver’s license. She plans to practice the same number of hours each week.

 a. Let \(h \) represent the number of hours per week that she practices driving. Make a table showing the number of weeks \(w \) that she will need to practice for the following values of \(h \): 1, 2, 4, 5, 8, and 10.

 b. Describe how the number of weeks changes as the number of hours per week increases.

 c. Write and graph an equation that shows the relationship between \(h \) and \(w \).

H.O.T. Problems Use **Higher-Order Thinking Skills**

52. **FIND THE ERROR** Christian and Trevor found an equation such that \(x \) and \(y \) vary inversely, and \(y = 10 \) when \(x = 5 \). Is either of them correct? Explain.

\[
\begin{align*}
\text{Christian} & \quad k = \frac{y}{x} = \frac{10}{2} = 5 \quad \text{or} \quad y = 5x \\
\text{Trevor} & \quad k = xy = (5)(10) = 50 \quad \text{or} \quad y = \frac{50}{x}
\end{align*}
\]

53. **CHALLENGE** Suppose \(f \) varies inversely with \(g \), and \(g \) varies inversely with \(h \). What is the relationship between \(f \) and \(h \)?

54. **REASONING** Does \(xy = -k \) represent an inverse variation? Explain.

55. **OPEN ENDED** Give a real-world situation or phenomena that can be modeled by an inverse variation equation. Use the correct terminology to describe your example and explain why this situation is an inverse variation.

56. **WRITING IN MATH** Compare and contrast direct and inverse variation. Include a description of the relationship between slope and the graphs of a direct and inverse variation.

Real-World Link

In 2007, Illinois began the Operation Teen Safe Driving program. The program challenges high schools to compete against each other to develop the most comprehensive and creative safe driving community.

Source: Ford Motor Company
57. Given a constant force, the acceleration of an object varies inversely with its mass. Assume that a constant force is acting on an object with a mass of 6 pounds resulting in an acceleration of 10 ft/s². The same force acts on another object with a mass of 12 pounds. What would be the resulting acceleration?

A 4 ft/s² C 6 ft/s²
B 5 ft/s² D 7 ft/s²

58. Fiona had an average of 56% on her first seven tests. What would she have to make on her eighth test to average 60% on 8 tests?

F 82% H 100%
G 88% J 98%

59. Anthony takes a picture of a 1-meter snake beside a brick wall. When he develops the pictures, the 1-meter snake is 2 centimeters long and the wall is 4.5 centimeters high. What was the actual height of the brick wall?

A 2.25 cm B 22.5 cm C 225 cm D 0.225 cm

60. SHORT RESPONSE Find the area of the rectangle.

\[
\text{Area} = (3 + x) \times (12 + x) \text{ cm}^2
\]

Spiral Review

For each triangle, find \(\sin A \), \(\cos A \), and \(\tan A \) to the nearest ten-thousandth.

(Lesson 10-8)

61. \[
\triangle ABC
\]

62. \[
\triangle ABC
\]

63. \[
\triangle ABC
\]

64. CRAFTS Jane is working on a stained glass window with a pattern of isosceles triangles with sides that measure 2 inches, 2 inches, and 2.8 inches. She has several square pieces of glass that measure 4 inches on each side from which to cut these triangles. How many triangles can she cut from each square?

(Lesson 10-7)

Solve each equation. (Lesson 10-4)

65. \(\sqrt{10c} + 2 = 5 \)

66. \(\sqrt{9h} + 19 = 9 \)

67. \(\sqrt{7k} + 2 + 2 = 5 \)

68. \(\sqrt{5r - 1} = r - 5 \)

69. \(6 + \sqrt{2x + 11} = -x \)

70. \(4 + \sqrt{4t - 4} = t \)

Skills Review

Simplify. Assume that no denominator is equal to zero. (Lesson 7-2)

71. \(\frac{7^8}{7^6} \)

72. \(\frac{x^2y^{12}}{x^2y^7} \)

73. \(\frac{5pq^2}{10p^6y^5} \)

74. \(\left(\frac{2c^3d}{7z^2} \right)^3 \)

75. \(\left(\frac{4a^2b}{2c^3} \right)^2 \)

76. \(y^0(y^5)(y^{-9}) \)

77. \(\frac{(4m^{-3}n^5)^0}{mn} \)

78. \(\left(\frac{3y^2}{21x^5y^2} \right)^0 \)

676 Chapter 11 Rational Functions and Equations
Several concepts need to be applied when reading rational expressions. A fraction bar acts as a grouping symbol, where the entire numerator is divided by the entire denominator.

ACTIVITY 1

Read the expression \(\frac{4y + 6}{14}\).

It is **correct** to read the expression as **the quantity four y plus six divided by fourteen**.

It is **incorrect** to read the expression as **four y plus six divided by fourteen or four y divided by fourteen plus six**.

If a fraction consists of two or more terms divided by a monomial or one-term denominator, the denominator divides each term.

ACTIVITY 2

Simplify \(\frac{4y + 6}{14}\).

It is **correct** to write \(\frac{4y + 6}{14} = \frac{4y}{14} + \frac{6}{14}\).

\[= \frac{2y}{7} + \frac{3}{7} \text{ or } \frac{2y + 3}{7}\]

It is also **correct** to write \(\frac{4y + 6}{14} = \frac{2(2y + 3)}{2 \cdot 7}\).

\[= \frac{2(2y + 3)}{14} \text{ or } \frac{2y + 3}{7}\]

It is **incorrect** to write \(\frac{4y + 6}{14} = \frac{4y}{14} + \frac{6}{7}\).

Exercises

Write the verbal translation of each rational expression.

1. \(\frac{x - 3}{5}\)
2. \(\frac{2x}{x + 3}\)
3. \(\frac{c + 3}{c^2 - 4}\)
4. \(\frac{b^2 - 9}{b - 3}\)
5. \(\frac{n^2 + 2n - 8}{n - 4}\)
6. \(\frac{h^2 - 6h + 1}{h^2 + h + 5}\)
7. \(\frac{2x + 4}{10}\)
8. \(\frac{4m + 12}{16}\)
9. \(\frac{2y^2 - 4y}{16y}\)
10. \(\frac{g - 9}{g^2 - 81}\)
11. \(\frac{2p - 5}{4p^2 - 20p + 25}\)
12. \(\frac{2d - 7}{2d^2 + d - 28}\)
Rational Functions

Why?

Trina is reading a 300-page book. The average number of pages she reads each day \(y \) is given by \(y = \frac{300}{x} \), where \(x \) is the number of days that she reads.

Identify Excluded Values

The function \(y = \frac{300}{x} \) is an example of a rational function. This function is nonlinear.

Key Concept

A rational function can be described by an equation of the form \(y = \frac{p}{q} \), where \(p \) and \(q \) are polynomials and \(q \neq 0 \).

Parent function: \(f(x) = \frac{1}{x} \)

Type of graph: hyperbola

Domain: \(\{x | x \neq 0\} \)

Range: \(\{y | y \neq 0\} \)

Since division by zero is undefined, any value of a variable that results in a denominator of zero must be excluded from the domain of that variable. These are called excluded values of the rational function.

EXAMPLE 1

Find Excluded Values

State the excluded value for each function.

a. \(y = -\frac{2}{x} \)

The denominator cannot equal 0. So, the excluded value is \(x = 0 \).

b. \(y = \frac{2}{x + 1} \)

\(x + 1 = 0 \) Set the denominator equal to 0.
\(x = -1 \) Subtract 1 from each side.

The excluded value is \(x = -1 \).

c. \(y = \frac{5}{4x - 8} \)

\(4x - 8 = 0 \) Set the denominator equal to 0.
\(4x = 8 \) Add 8 to each side.
\(x = 2 \) Divide each side by 4.

The excluded value is \(x = 2 \).

Check Your Progress

1A. \(y = \frac{5}{2x} \)

1B. \(y = \frac{x}{x - 7} \)

1C. \(y = \frac{4}{3x + 9} \)
Depending on the real-world situation, in addition to excluding zero from the domain of a rational function, additional values might have to be excluded from the domain as well.

Real-World EXAMPLE 2 Graph Real-Life Rational Functions

BALLOONS If there are \(x \) people in the basket of a hot air balloon, the function \(y = \frac{20}{x} \) represents the average number of square feet \(y \) per person. Graph this function.

Since the number of people cannot be zero, it is reasonable to exclude negative values and only use positive values for \(x \).

<table>
<thead>
<tr>
<th>Number of People (x)</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square Feet per Person (y)</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Check Your Progress

2. **GEOMETRY** A rectangle has an area of 18 square inches. The function \(\ell = \frac{18}{w} \) shows the relationship between the length and width. Graph the function.

Identify and Use Asymptotes In Example 2, an excluded value is \(x = 0 \). Notice that the graph approaches the vertical line \(x = 0 \), but never touches it.

The graph also approaches but never touches the horizontal line \(y = 0 \). The lines \(x = 0 \) and \(y = 0 \) are called *asymptotes*. An asymptote is a line that the graph of a function approaches.

StudyTip

Use Asymptotes

Asymptotes are helpful for graphing rational functions. However, they are not part of the graph.

Key Concept

Asymptotes

A rational function in the form \(y = \frac{a}{x - b} + c \) has a vertical asymptote at the \(x \)-value that makes the denominator equal zero, \(x = b \). It has a horizontal asymptote at \(y = c \).

The domain of a rational function is all real numbers except \(x = b \). The range is all real numbers except \(y = c \). Rational functions are discontinuous, so choose \(x \)-values on both sides of the vertical asymptote to graph both portions of the function.
EXAMPLE 3 Identify and Use Asymptotes to Graph Functions

Identify the asymptotes of each function. Then graph the function.

a. \(y = \frac{2}{x} - 4 \)

Step 1 Identify and graph the asymptotes using dashed lines.
- vertical asymptote: \(x = 0 \)
- horizontal asymptote: \(y = -4 \)

Step 2 Make a table of values and plot the points. Then connect them.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-5</td>
<td>-6</td>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

b. \(y = \frac{1}{x + 1} \)

Step 1 To find the vertical asymptote, find the excluded value.
- \(x + 1 = 0 \) \quad Set the denominator equal to 0.
- \(x = -1 \) \quad Subtract 1 from each side.
- vertical asymptote: \(x = -1 \)
- horizontal asymptote: \(y = 0 \)

Step 2

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-0.5</td>
<td>-1</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Check Your Progress

3A. \(y = -\frac{6}{x} \)
3B. \(y = \frac{1}{x - 3} \)
3C. \(y = \frac{2}{x + 2} + 1 \)

Four types of nonlinear functions are shown below.

Math History Link

Evelyn Boyd Granville (1924–)
Granville majored in mathematics and physics at Smith College in 1945, where she graduated summa cum laude. She earned an M.A. in mathematics and physics and a Ph.D. in mathematics from Yale University. Granville’s doctoral work focused on functional analysis.

Concept Summary

Families of Functions

<table>
<thead>
<tr>
<th>Quadratic</th>
<th>Exponential</th>
<th>Radical</th>
<th>Rational</th>
</tr>
</thead>
</table>
| Parent function: \(y = x^2 \)
General form: \(y = ax^2 + bx + c \) | Parent function: varies
General form: \(y = ab^x \) | Parent function: \(y = \sqrt{x} \)
General form: \(y = \sqrt{x - b} + c \) | Parent function: \(y = \frac{1}{x} \)
General form: \(y = \frac{a}{x - b} + c \) |

Check Your Understanding

Example 1 p. 678
State the excluded value for each function.
1. \(y = \frac{5}{x} \)
2. \(y = \frac{1}{x + 3} \)
3. \(y = \frac{x + 2}{x - 1} \)
4. \(y = \frac{x}{2x - 8} \)

Example 2 p. 679
5. PARTY PLANNING The cost of decorations for a party is $32. This is split among a group of friends. The amount each person pays \(y \) is given by \(y = \frac{32}{x} \), where \(x \) is the number of people. Graph the function.

Example 3 p. 680
Identify the asymptotes of each function. Then graph the function.
6. \(y = \frac{2}{x} \)
7. \(y = \frac{3}{x} - 1 \)
8. \(y = \frac{1}{x - 2} \)
9. \(y = \frac{-4}{x + 2} \)
10. \(y = \frac{3}{x - 1} + 2 \)
11. \(y = \frac{2}{x + 1} - 5 \)

Practice and Problem Solving

Example 1 p. 678
State the excluded value for each function.
12. \(y = \frac{-1}{x} \)
13. \(y = \frac{8}{x - 8} \)
14. \(y = \frac{x}{x + 2} \)
15. \(y = \frac{4}{x + 6} \)
16. \(y = \frac{x + 1}{x - 3} \)
17. \(y = \frac{2x + 5}{x + 5} \)
18. \(y = \frac{7}{5x - 10} \)
19. \(y = \frac{x}{2x + 14} \)

Example 2 p. 679
20. ANTELOPES A pronghorn antelope can run 40 miles without stopping. The average speed is given by \(y = \frac{40}{x} \), where \(x \) is the time it takes to run the distance.
 a. Graph the function \(y = \frac{40}{x} \).
 b. Describe the asymptotes.

21. CYCLING A cyclist rides 10 miles each morning. Her average speed \(y \) is given by \(y = \frac{10}{x} \), where \(x \) is the time it takes her to ride 10 miles. Graph the function.

Example 3 p. 680
Identify the asymptotes of each function. Then graph the function.
22. \(y = \frac{5}{x} \)
23. \(y = \frac{-3}{x} \)
24. \(y = \frac{2}{x} + 3 \)
25. \(y = \frac{1}{x} - 2 \)
26. \(y = \frac{1}{x + 3} \)
27. \(y = \frac{1}{x - 2} \)
28. \(y = \frac{-2}{x + 1} \)
29. \(y = \frac{4}{x - 1} \)
30. \(y = \frac{1}{x - 2} + 1 \)
31. \(y = \frac{3}{x - 1} - 2 \)
32. \(y = \frac{2}{x + 1} - 4 \)
33. \(y = \frac{-1}{x + 4} + 3 \)

34. READING Refer to the application at the beginning of the lesson.
 a. Graph the function.
 b. Choose a point on the graph, and describe what it means in the context of the situation.

35. The graph shows a translation of the graph of \(y = \frac{1}{x} \).
 a. Describe the asymptotes.
 b. Write a function for the graph.
36. **BIRDS** A long-tailed jaeger is a sea bird that can migrate 5000 miles or more each year. The average rate in miles per hour r can be given by the function $r = \frac{5000}{t}$, where t is the time in hours. Use the function to determine the average rate of the bird if it spends 250 hours flying.

37. **CLASS TRIP** The freshmen class is going to a science museum. As part of the trip, each person in the class is also contributing an equal amount of money to name a star.
 a. Write a verbal description for the total cost of the trip for each person.
 b. Write an equation to represent the total cost y per person p.
 c. Use a graphing calculator to graph the equation. Describe a reasonable domain and range for the function.
 d. Estimate the number of people needed for the total cost of the trip to be about $15.

Graph each function. Identify the asymptotes.

38. $y = \frac{4x + 3}{2x - 4}$

39. $y = \frac{x^2}{x^2 - 1}$

40. $y = \frac{x}{x^2 - 9}$

41. **GEOMETRY** The equation $h = \frac{2(64)}{b_1 + 8}$ represents the height h of a trapezoid with an area of 64 square units and bases of b_1 units and 8 units.
 a. Describe a reasonable domain and range of the function.
 b. Graph the function in the first quadrant.
 c. Use the graph to estimate the value of h when $b_1 = 10$.

H.O.T. Problems

42. **CHALLENGE** Graph $y = \frac{1}{x^2 - 4}$. State the domain and the range of the function.

43. **REASONING** Without graphing, describe the transformation that takes place between the graph of $y = \frac{1}{x}$ and the graph of $y = \frac{1}{x + 5} - 2$.

44. **OPEN ENDED** Write a rational function if the asymptotes of the graph are at $x = 3$ and $y = 1$. Explain how you found the function.

45. **REASONING** Determine whether the following statement is true or false. If false, give a counterexample.

 The graph of a rational function will have at least one intercept.

46. **WHICH ONE DOESN'T BELONG** Identify the function that does not belong with the other three. Explain your reasoning.

\[
y = \frac{4}{x} \quad y = \frac{6}{x + 1} \quad y = \frac{8}{x + 1} \quad y = \frac{10}{2x}
\]

47. **WRITING IN MATH** Write a rule for determining the vertical asymptotes of a rational function.
48. Simplify \(\frac{2a^2d}{3bc} \cdot \frac{9b^2c}{16ad^2}\).

A \(\frac{ab}{c^2}\)
B \(\frac{ab}{d}\)
C \(\frac{6a}{4bd}\)
D \(\frac{3ab}{8d}\)

49. **SHORT RESPONSE** One day Lola ran 100 meters in 15 seconds, 200 meters in 45 seconds, and 200 meters over low hurdles in one and a half minutes. How many more seconds did it take her to run 200 meters over low hurdles than the 200-meter dash?

50. Scott and Ian started a T-shirt printing business. The total start-up costs were $450. It costs $5.50 to print one T-shirt. Write a rational function \(A(x)\) for the average cost of producing \(x\) T-shirts.

\[
F \quad A(x) = \frac{450 + 5.5x}{x} \\
G \quad A(x) = \frac{450}{x} + 5.5 \\
H \quad A(x) = 450x + 5.5 \\
J \quad A(x) = 450 + 5.5x
\]

51. **GEOMETRY** Which of the following is a quadrilateral with exactly one pair of parallel sides?

A parallelogram
B rectangle
C square
D trapezoid

52. **TRAVEL** The Brooks family can drive to the beach, which is 220 miles away, in 4 hours if they drive 55 miles per hour. Kendra says that they would save at least a half an hour if they were to drive 65 miles per hour. Is Kendra correct? Explain.

(Lesson 11-1)

Use a calculator to find the measure of each angle to the nearest degree.

\[53. \sin C = 0.9781 \quad 54. \tan H = 0.6473 \quad 55. \cos K = 0.7658 \quad 56. \tan Y = 3.6541 \quad 57. \cos U = 0.5000 \quad 58. \sin N = 0.3832\]

If \(c\) is the measure of the hypotenuse of a right triangle, find each missing measure. If necessary round to the nearest hundredth.

\[59. a = 15, b = 60, c = ? \quad 60. a = 17, c = 35, b = ? \quad 61. a = \sqrt{110}, b = 1, c = ? \quad 62. a = \sqrt{17}, b = \sqrt{12}, c = ? \quad 63. a = 6, c = 11, b = ? \quad 64. a = 9, b = 6, c = ? \]

55. **SIGHT** The formula \(d = \sqrt{\frac{3h}{2}}\) represents the distance \(d\) in miles that a person \(h\) feet high can see. Irene is standing on a cliff that is 310 feet above sea level. How far can Irene see from the cliff? Write a simplified radical expression and as a decimal approximation.

(Lesson 10-3)

\[65. SIGHT \quad \text{The formula } d = \sqrt{\frac{3h}{2}} \text{ represents the distance } d \text{ in miles that a person } h \text{ feet high can see. Irene is standing on a cliff that is } 310 \text{ feet above sea level. How far can Irene see from the cliff? Write a simplified radical expression and as a decimal approximation.} \]

(Lesson 10-3)

Skills Review

(Lessons 8-3 and 8-4)

\[66. x^2 + 11x + 24 \quad 67. w^2 + 13w - 48 \quad 68. p^2 - 2p - 35 \quad 69. 72 + 27a + a^2 \]

\[70. c^2 + 12c + 35 \quad 71. d^2 - 7d + 10 \quad 72. g^2 - 19g + 60 \quad 73. n^2 + 3n - 54 \]

\[74. 5x^2 + 27x + 10 \quad 75. 24b^2 - 14b - 3 \quad 76. 12a^2 - 13a - 35 \quad 77. 6x^2 - 14x - 12\]
Simplifying Rational Expressions

Why?

Big-O is a “hubless” Ferris wheel in Tokyo, Japan. The centripetal force, or the force acting toward the center, is given by \(\frac{mv^2}{r} \), where \(m \) is the mass of the Ferris wheel, \(v \) is the velocity, and \(r \) is the radius.

Identify Excluded Values

The expression \(\frac{mv^2}{r} \) is an example of a rational expression. A rational expression is an algebraic fraction whose numerator and denominator are polynomials. Since division by zero is undefined, the polynomial in the denominator cannot be 0.

EXAMPLE 1 Find Excluded Values

State the excluded values for each rational expression.

a. \(\frac{-8}{r^2 - 36} \)

Exclude the values for which \(r^2 - 36 = 0 \).

\[r^2 - 36 = 0 \]

The denominator cannot be zero.

\[(r - 6)(r + 6) = 0 \]

Factor.

\[r - 6 = 0 \quad \text{or} \quad r + 6 = 0 \]

Zero Product Property

\[r = 6 \quad \text{or} \quad r = -6 \]

Therefore, \(r \) cannot equal 6 or -6.

b. \(\frac{n^2}{n^2 + 4n - 5} \)

Exclude the values for which \(n^2 + 4n - 5 = 0 \).

\[n^2 + 4n - 5 = 0 \]

The denominator cannot be zero.

\[(n - 1)(n + 5) = 0 \]

Factor.

\[n - 1 = 0 \quad \text{or} \quad n + 5 = 0 \]

Zero Product Property

\[n = 1 \quad \text{or} \quad n = -5 \]

Therefore, \(n \) cannot equal 1 or -5.

Check Your Progress

1A. \(\frac{5x}{x^2 - 81} \)

1B. \(\frac{3a - 2}{a^2 + 6a + 8} \)

Personal Tutor glencoe.com
EXAMPLE 2
Use Rational Expressions

GEOMETRY Find the height of a cylinder that has a volume of 821 cubic inches and a radius of 7 inches. Round to the nearest tenth.

Understand You have a rational expression with unknown variables, \(V \) and \(r \).

Plan Substitute 821 for \(V \) and 7 for \(r \) and simplify.

Solve

\[
\frac{V}{\pi r^2} = \frac{821}{\pi (7)^2} \\
\approx 5.3
\]

The height of the cylinder is about 5.3 inches.

Check Use estimation to determine whether the answer is reasonable.

\[
\frac{800}{3.50} \approx 5 \checkmark
\]

The solution is reasonable.

Check Your Progress

2. Find the height of the cylinder that has a volume of 710 cubic inches and a diameter of 18 inches.

Simplify Expressions A rational expression is in simplest form when the numerator and denominator have no common factors except 1. To simplify a rational expression, divide out any common factors of the numerator and denominator.

Key Concept

Simplifying Rational Expressions

Words Let \(a, b, \) and \(c \), be polynomials with \(a \neq 0 \) and \(c \neq 0 \).

Symbols

\[
\frac{ba}{ca} = \frac{b \cdot a}{c \cdot a} = \frac{b}{c}
\]

Example

\[
\frac{3x - 9}{4x - 12} = \frac{3(x - 3)}{4(x - 3)} = \frac{3}{4}
\]

Test-Taking Tip Eliminate Possibilities Since there is only one negative factor in the expression in Example 3, the simplified expression must be negative. You can eliminate choices A and B.

KCCT EXAMPLE 6 MA-HS-5.2.5

Which expression is equivalent to \(\frac{-3x^2(4x^5)}{9x^6} \)?

A \(\frac{4}{3x} \)
B \(\frac{4}{3x} \)
C \(-\frac{4}{3x} \)
D \(-\frac{4}{3x} \)

Read the Test Item The expression represents the product of two monomials and the division of that product by another monomial.

Solve the Test Item

Step 1 Factor the numerator and denominator, using their GCF.

\[
\frac{(3x^3)(-4x)}{(3x^6)(3)}
\]

Step 2 Simplify. The correct answer is D.

Check Your Progress

3. Which expression is equivalent to \(\frac{16c^2b^4}{8c^3b} \)?

F \(\frac{2b^3}{c} \)
G \(\frac{b^3}{2c} \)
H \(\frac{1}{2b^3c} \)
J \(2b^3c \)
You can use the same procedure to simplify a rational expression in which the numerator and denominator are polynomials.

EXAMPLE 4 Simplify Rational Expressions

Simplify \(\frac{2r + 18}{r^2 + 8r - 9} \). State the excluded values of \(r \).

\[
\frac{2r + 18}{r^2 + 8r - 9} = \frac{2(r + 9)}{(r + 9)(r - 1)} \quad \text{Factor.}
\]

\[
= \frac{2}{r - 1} \quad \text{or} \quad \frac{2}{r + 1} \quad \text{Divide the numerator and denominator by the GCF,} \quad r + 9.
\]

Excluded values for which \(r^2 + 8r - 9 = 0 \):

- \(r^2 + 8r - 9 = 0 \)
- \((r + 9)(r - 1) = 0 \)
- \(r = -9 \) or \(r = 1 \)

So, \(r \neq -9 \) and \(r \neq 1 \).

Check Your Progress

Simplify each rational expression. State the excluded values of the variables.

4A. \(\frac{n + 3}{n^2 + 10n + 21} \)

4B. \(\frac{y^2 + 9y - 10}{2y + 20} \)

When simplifying rational expressions, look for binomials that are opposites. For example, \(5 - x \) and \(x - 5 \) are opposites because \(5 - x = -1(x - 5) \). So, you can write \(\frac{x - 5}{5 - x} \) as \(\frac{x - 5}{-1(x - 5)} \).

EXAMPLE 5 Recognize Opposites

Simplify \(\frac{36 - t^2}{5t - 30} \). State the excluded values of \(t \).

\[
\frac{36 - t^2}{5t - 30} = \frac{(6 - t)(6 + t)}{5(t - 6)} \quad \text{Factor.}
\]

\[
= \frac{-1(6 - t)(6 + t)}{5(t - 6)} \quad \text{Rewrite} \ 6 - t \text{ as} \ -1(t - 6).
\]

\[
= \frac{-1(6 + t)}{5} \quad \text{or} \quad -\frac{6 + t}{5} \quad \text{Divide out the common factor,} \quad t - 6.
\]

Excluded values for which \(5t - 30 = 0 \):

- \(5t - 30 = 0 \)
- \(5t = 30 \)
- \(t = 6 \)

So, \(t \neq 6 \).

Check Your Progress

Simplify each expression. State the excluded values of \(x \).

5A. \(\frac{12x + 36}{x^2 - x - 12} \)

5B. \(\frac{x^2 - 2x - 35}{x^2 - 9x + 14} \)
Recall that to find the zeros of a quadratic function, you need to find the values of \(x\) when \(f(x) = 0\). The zeros of a rational function are found in the same way.

EXAMPLE 6
Rational Functions

Find the zeros of \(f(x) = \frac{x^2 + 3x - 18}{x - 3}\).

\[f(x) = \frac{x^2 + 3x - 18}{x - 3} \quad \text{Original function} \]

\[0 = \frac{x^2 + 3x - 18}{x - 3} \quad f(x) = 0 \]

\[0 = \frac{(x + 6)(x - 3)}{x - 3} \quad \text{Factor.} \]

\[0 = \frac{(x + 6)(x - 3)}{x - 3} \quad \text{Divide out common factors.} \]

\[0 = x + 6 \quad \text{Simplify.} \]

When \(x = -6\), the numerator becomes 0, so \(f(x) = 0\). Therefore, the zero of the function is \(-6\).

Check Your Progress

Find the zeros of each function.

6A.
\[f(x) = \frac{x^2 + 2x - 15}{x + 1} \]

6B.
\[f(x) = \frac{x^2 + 6x + 8}{x^2 + x - 2} \]

Check Your Understanding

Example 1
State the excluded values for each rational expression.

\[\frac{8}{x^2 - 16} \quad \frac{3m}{m^2 - 6m + 5} \]

Example 2
PHYSICAL SCIENCE A 0.16-kilogram ball attached to a string is being spun in a circle 7.26 meters per second. The expression \(\frac{mv^2}{r}\), where \(m\) is the mass of the ball, \(v\) is the velocity, and \(r\) is the radius, can be used to find the force that keeps the ball spinning in a circle. If the circle has a radius of 0.5 meter, find the force that must be exerted to keep the ball spinning. Round to the nearest tenth.

Examples 3–5
Simplify each expression. State the excluded values of the variables.

\[\frac{28ab^3}{16a^2b} \quad \frac{(-3r)(10r^4)}{6r^5} \]

\[\frac{5d + 15}{d^2 - d - 12} \quad \frac{x^2 + 11x + 28}{x + 4} \]

\[\frac{2r - 12}{r^2 - 36} \quad \frac{3y - 27}{81 - y^2} \]

Example 6
Find the zeros of each function.

\[f(x) = \frac{x^2 - x - 12}{x - 2} \]

\[f(x) = \frac{x^2 - x - 6}{x^2 + 8x + 12} \]
Practice and Problem Solving

Example 1
State the excluded values for each rational expression.

12. \(\frac{-n}{n^2 - 49} \)
13. \(\frac{5x + 1}{x^2 - 1} \)
14. \(\frac{12a}{a^2 - 3a - 10} \)
15. \(\frac{k^2 - 4}{k^2 + 5k - 24} \)

Example 2
16. **PAINTING** The area of each wall in Serefina’s room is \(x^2 + 3x + 2 \) square feet. A gallon of paint will cover \(x^2 - 2x - 3 \) square feet. Write an expression that gives the number of gallons that Serefina will need to buy to paint her room.

17. **GEOMETRY** Use the circle at the right to write the ratio \(\frac{\text{circumference}}{\text{area}} \). Then simplify. State the excluded value of the variable.

Examples 3–5
Simplify each expression. State the excluded values of the variables.

18. \(\frac{15x^4y^2}{40x^3y^3} \)
19. \(\frac{32n^2p}{2n^4p} \)
20. \(\frac{(4t^3)(2t)}{20t^2} \)

21. \(\frac{(7c^2)(-6c^3)}{21c^4} \)
22. \(\frac{4x - 24}{x^2 - 12x + 36} \)
23. \(\frac{a^2 + 3a}{a^2 - 3a - 18} \)

24. \(\frac{n^2 + 7n - 18}{n - 2} \)
25. \(\frac{x^2 + 4x - 32}{x + 8} \)
26. \(\frac{x^2 - 25}{x^2 + 5x} \)

27. \(\frac{2p^2 - 14p}{p^2 - 49} \)
28. \(\frac{2x - 10}{25 - x^2} \)
29. \(\frac{64 - c^2}{c^2 - 7c - 8} \)

Example 6
Find the zeros of each function.

30. \(f(x) = \frac{x^2 - x - 12}{x^2 + 2x - 35} \)
31. \(f(x) = \frac{x^2 + 3x - 4}{x^2 + 9x + 20} \)
32. \(f(x) = \frac{2x^2 + 11x - 40}{2x + 5} \)
33. \(f(x) = \frac{3x^2 - 18x + 24}{x - 6} \)

34. \(f(x) = \frac{x^3 + x^2 - 6x}{x - 1} \)
35. \(f(x) = \frac{x^3 - 4x^2 - 12x}{x + 2} \)

36. PYRAMIDS The perimeter of the base of the Pyramid of the Sun is \(4\pi \) times the height. The perimeter of the base of the Great Pyramid of Giza is \(2\pi \) times the height. Write and simplify each ratio comparing the base perimeters.

a. Pyramid of the Sun to the Great Pyramid
b. Great Pyramid to the Pyramid of the Sun

37. FERRIS WHEELS Refer to the Real-World Link.

a. To find the speed traveled by a car located on the circumference of the wheel, you can find the circumference of a circle and divide by the time it takes for one rotation of the wheel. Write a rational expression for the speed of a car rotating in time \(t \).

b. Suppose the first Ferris wheel rotated once every 5 minutes. What was the speed of a car on the circumference in feet per minute?

Simplify each expression. State the excluded values of the variables.

38. \(\frac{3a^2b^4 + 9a^2b - 6a^5b}{3a^2b} \)
39. \(\frac{8x^5 - 10xy^2}{2xy^3} \)
40. \(\frac{x + 5}{3x^2 + 14x - 5} \)

Real-World Link

George Ferris built the first Ferris wheel for the World’s Columbian Exposition in 1893. It had a diameter of 250 feet.
Source: The New York Times

Pyramid	Height (ft)
Pyramid of the Sun (Mexico) | 233.5
Great Pyramid (Egypt) | 481.4

Source: Nexus Network Journal
PACKAGING To minimize packaging expenses, a company uses packages that have the least surface area to volume ratio. For each figure, write a ratio comparing the surface area to the volume. Then simplify. State the excluded values of the variables.

a. ![Image of a package with dimensions 2x x x]

b. ![Image of a cylinder with dimensions b]

42. HISTORY The diagram shows how a lever may have been used to move blocks.

a. The mechanical advantage of a lever is \(\frac{L_A}{L_R} \), where \(L_A \) is the length of the effort arm and \(L_R \) is the length of the resistance arm. Find the mechanical advantage of the lever shown.

b. The force placed on the rock is the product of the mechanical advantage and the force applied to the end of the lever. If the Egyptian worker can apply a force of 180 pounds, what is the greatest weight he can lift with the lever?

c. To lift a 535-pound rock using a 7-foot lever with the fulcrum 2 feet from the rock, how much force will have to be used?

H.O.T. Problems Use Higher-Order Thinking Skills

43. **FIND THE ERROR** Colleen and Sanson simplified \(\frac{12x + 36}{x^2 - x - 12} \) and found the excluded value(s). Is either of them correct? Explain.

- **Colleen**
 \[
 \frac{12x + 36}{x^2 - x - 12} = \frac{12(x + 3)}{(x - 4)(x + 3)}
 \]
 The excluded values are 4 and -3.

- **Sanson**
 \[
 \frac{12x + 36}{x^2 - x - 12} = \frac{12(x + 3)}{(x - 4)(x + 3)}
 \]
 \[
 = \frac{12}{x - 4}
 \]
 The excluded value is 4.

44. **CHALLENGE** Compare and contrast the graphs of \(y = x - 2 \) and \(y = \frac{x^2 + 5x - 14}{x + 7} \).

45. **REASONING** Explain why every polynomial is also a rational expression.

46. **OPEN ENDED** Write a rational expression with excluded values -2 and 2. Explain how you found the expression.

47. **REASONING** Is \(\frac{2x^2 - 4x}{x - 2} \) in simplest form? Justify your answer.

48. **WRITING IN MATH** List the steps you would use to simplify the expression \(\frac{x^2 + x - 20}{x + 5} \). State the excluded value.
49. Simplify \(\frac{2x + 4}{2} \).
 A. \(x + 1 \)
 B. \(x \)
 C. \(x + 2 \)
 D. \(\frac{x}{2} \)

50. SHORT RESPONSE Shiro is buying a car for $5800. He can pay the full amount in cash, or he can pay $1000 down and $230 a month for 24 months. How much more would he pay for the car on the second plan?

51. GEOMETRY What is the name of the figure?
 F. triangular pyramid
 G. triangular prism
 H. rectangular prism
 J. triangulon

52. A rectangle has a length of 10 inches and a width of 5 inches. Another rectangle has the same area as the first rectangle but its width is 2 inches. Find the length of the second rectangle.
 A. 30 in.
 B. 60 in.
 C. 20 in.
 D. 25 in.

Spiral Review

State the excluded value for each function. (Lesson 11-2)

53. \(y = \frac{6}{x} \)
54. \(y = \frac{2}{x - 5} \)
55. \(y = \frac{x - 4}{x - 3} \)
56. \(y = \frac{3x}{2x + 6} \)

Solve. Assume that \(y \) varies inversely as \(x \). (Lesson 11-1)

57. If \(y = 10 \) when \(x = 4 \), find \(x \) when \(y = 2 \).
58. If \(y = 12 \) when \(x = 3 \), find \(x \) when \(y = 6 \).
59. If \(y = -5 \) when \(x = 3 \), find \(x \) when \(y = -3 \).
60. If \(y = 21 \) when \(x = -6 \), find \(x \) when \(y = 7 \).

61. CRAFTS Melinda is working on a quilt pattern containing isosceles triangles with sides that measure 2 inches, 2 inches, and 2.8 inches. She has several square pieces of material that measure 4 inches on each side. From each square piece, how many triangles with the required dimensions can she cut? (Lesson 10-7)

Find the distance between each pair of points whose coordinates are given. (Lesson 10-6)

62. \((12, 3), (-8, 3)\)
63. \((0, 0), (5, 12)\)
64. \((6, 8), (3, 4)\)
65. \((-8, -4), (-3, -8)\)

Simplify. (Lesson 10-2)

66. \(\sqrt{20}\)
67. \(\sqrt{18}\)
68. \(\sqrt{2} \cdot \sqrt{8}\)
69. \(2\sqrt{32}\)
70. \(\sqrt{5} \cdot \sqrt{6}\)
71. \(\sqrt{40a^2}\)
72. \(\sqrt{\frac{1}{8}}\)
73. \(\sqrt{\frac{2}{7}} \cdot \sqrt{\frac{7}{3}}\)

74. INVESTMENTS Determine the amount of an investment if $250 is invested at an interest rate of 7.3% compounded quarterly for 40 years. (Lesson 9-7)

Skills Review

Find the greatest common factor for each set of monomials. (Lesson 8-1)

75. \(2x, 8x^2\)
76. \(3y^2, 7y^3\)
77. \(7g, 10h\)
78. \(21c^2d^3, 14cd^2\)
79. \(9qt^2, 18q^2t^2, 27qt\)
80. \(10ab, 25a^2b^2, 30a^2b\)
When simplifying rational expressions, you can use a graphing calculator to support your answer. If the graphs of the original expression and the simplified expression overlap, they are equivalent. You can also use the graphs to see excluded values.

ACTIVITY Simplify a Rational Expression

Simplify \(\frac{x^2 - 16}{x^2 + 8x + 16} \).

Step 1 Factor the numerator and denominator.

\[
\frac{x^2 - 16}{x^2 + 8x + 16} = \frac{(x - 4)(x + 4)}{(x + 4)(x + 4)} = \frac{(x - 4)}{(x + 4)}
\]

When \(x = -4 \), \(x + 4 = 0 \). Therefore, \(x \) cannot equal \(-4\) because you cannot divide by zero.

Step 2 Graph the original expression.

- Set the calculator to Dot mode.
- Enter \(\frac{x^2 - 16}{x^2 + 8x + 16} \) as \(Y_1 \) and graph.

KEYSTROKES:

\[
\text{MODE} \uparrow \downarrow \uparrow \uparrow \text{ENTER} \quad \text{Y=} (\text{X,T,\theta,n}\ x^2 - 16) \quad \div (\text{X,T,\theta,n}\ x^2 + 8) \quad \text{X,T,\theta,n}\ + 16 \text{ ENTER} \quad \text{Zoom} \uparrow 6
\]

Step 3 Graph the simplified expression.

- Enter \(\frac{x - 4}{x + 4} \) as \(Y_2 \) and graph.

KEYSTROKES:

\[
\text{Y=} (\text{X,T,\theta,n}\ - 4) \quad \div (\text{X,T,\theta,n}\ + 4) \quad \text{Graph}
\]

Since the graphs overlap, the two expressions are equivalent.

Exercises

Simplify each expression. Then verify your answer graphically. Name the excluded values.

1. \(\frac{5x + 15}{x^2 + 10x + 21} \)

2. \(\frac{x^2 - 8x + 12}{x^2 + 7x - 18} \)

3. \(\frac{2x^2 + 6x + 4}{3x^2 + 9x + 6} \)

4. Simplify the rational expression \(\frac{3x - 8}{6x^2 - 16x} \).

 a. How can you use the TABLE function to verify that the original expression and the simplified expression are equivalent?

 b. How does the TABLE function show you that an \(x \)-value is an excluded value?
Then
You multiplied and divided polynomials. (Lesson 7-7 and 7-2)

Now
- Multiply rational expressions.
- Divide rational expressions.

KY Program of Studies
HS-VEO11 Students will add, subtract, multiply, divide and simplify rational expressions. Also addresses HS-NPO-S-NO10.

KY Math Online
- Extra Examples
- Personal Tutor
- Self-Check Quiz
- Homework Help

Then
You multiplied and divided polynomials. (Lesson 7-7 and 7-2)

Now
- Multiply rational expressions.
- Divide rational expressions.

A recent survey showed 10- to 17-year olds talk on their cell phones an average of 3.75 hours per day during the summer. The expression below can be used to find the average number of minutes youth talk on their phones during summer, approximately 90 days.

\[
\frac{90 \text{ days}}{\text{day}} \cdot \frac{3.75 \text{ hours}}{1 \text{ hour}} \cdot \frac{60 \text{ minutes}}{1 \text{ hour}} = 20,250 \text{ minutes}
\]

Multiply Rational Expressions

To multiply fractions, you multiply numerators and multiply denominators. Use this same method to multiply rational expressions.

Key Concept

Multiplying Rational Expressions

Words

Let \(a, b, c, \) and \(d \) be polynomials with \(b \neq 0 \) and \(d \neq 0 \).

Then,

\[
\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.
\]

Example

\[
\frac{x}{2x - 3} \cdot \frac{4x^2}{5} = \frac{4x^3}{5(2x - 3)}
\]

EXAMPLE 1

Multiply Expressions Involving Monomials

Find each product.

a. \(\frac{r^2x}{9t^3} \cdot \frac{3t^4}{r} \)

Divide by the common factors before multiplying.

\[
\frac{r^2x}{9t^3} \cdot \frac{3t^4}{r} = \frac{r^2x \cdot 3}{9t^3 \cdot 1} = \frac{r^2x}{3t^3} \quad \text{Divide by the common factors 3, } r, \text{ and } t^3.
\]

Simplify.

b. \(\frac{a + 4}{a^2} \cdot \frac{a}{a^2 + 2a - 8} \)

Factor the denominator.

\[
\frac{a + 4}{a^2} \cdot \frac{a}{a^2 + 2a - 8} = \frac{a + 4}{a^2} \cdot \frac{a}{(a + 4)(a - 2)} = \frac{1}{a(a - 2)} \quad \text{The GCF is } a(a + 4).
\]

Simplify.

Check Your Progress

Find each product.

1A. \(\frac{3x}{16x^2} \cdot \frac{8x^2}{3} \)

1B. \(\frac{x + 3}{x} \cdot \frac{5}{x^2 + 7x + 12} \)

1C. \(\frac{y^2 - 3y - 4}{y + 5} \cdot \frac{y + 5}{y^2 - 4y} \)
When you multiply fractions that involve units of measure, you can divide by the units in the same way that you divide by variables. Recall that this process is called dimensional analysis. You can use dimensional analysis to convert units of measure within a system and between systems.

EXAMPLE 2

Dimensional Analysis

SKI RACING Ann Proctor won the 2007 World Waterski Racing Championship race in her category when she finished the 88-kilometer course in 51.23 minutes. What was her average speed in miles per hour?

(Hint: $1 \text{ km} \approx 0.62 \text{ mi}$)

\[
\frac{88 \text{ km}}{51.23 \text{ min}} \cdot \frac{0.62 \text{ mi}}{1 \text{ km}} \cdot \frac{60 \text{ min}}{1 \text{ h}} = \frac{88 \cdot 0.62 \text{ mi}}{51.23 \cdot 1 \text{ h}} = \frac{3273.6 \text{ mi}}{51.23 \text{ h}} = \frac{63.9 \text{ mi}}{1 \text{ h}}
\]

Her average speed was 63.9 miles per hour.

Check Your Progress

2. **SKI RACING** What was Ann Proctor’s speed in feet per second?
EXAMPLE 4 Divide by Rational Expressions and Polynomials

Find each quotient.

a. \[\frac{2x + 6}{x^2} ÷ (x + 3) \]

\[\frac{2x + 6}{x^2} ÷ (x + 3) = \frac{2x + 6}{x^2} \cdot \frac{1}{x + 3} \]

Write the binomial as a fraction.

\[= \frac{2x + 6}{x^2} \cdot \frac{1}{x + 3} \]

Multiply by the reciprocal of \(x + 3 \).

\[= \frac{2x + 6}{x^2} \cdot \frac{1}{x + 3} \]

Factor \(4x + 6 \).

\[= \frac{2(x + 3)}{x^2} \cdot \frac{1}{x + 3} \]

Divide out the common factor and simplify.

b. \[\frac{a - 2}{4a + 4} ÷ \frac{a + 5}{a + 1} \]

\[\frac{a - 2}{4a + 4} ÷ \frac{a + 5}{a + 1} = \frac{a - 2}{4a + 4} \cdot \frac{a + 1}{a + 5} \]

Multiply by the reciprocal.

\[= \frac{a - 2}{4(a + 1)} \cdot \frac{a + 1}{a + 5} \]

Factor \(4a + 4 \).

\[= \frac{a - 2}{a + 1} \] or \[\frac{a - 2}{4a + 20} \]

The GCF is \(a + 1 \) and simplify.

Check Your Progress

4A. \[\frac{4d - 8}{2d - 6} ÷ \frac{2d - 4}{d - 4} \]

4B. \[\frac{b + 4}{3b + 2} ÷ \frac{3b + 12}{b + 1} \]

Sometimes you must factor a quadratic expression before you can simplify the quotient of rational expressions.

EXAMPLE 5 Expression Involving Polynomials

Find \[\frac{y - 3}{y^2 - 10y + 16} ÷ \frac{y^2 - 9}{y - 8} \].

\[\frac{y - 3}{y^2 - 10y + 16} ÷ \frac{y^2 - 9}{y - 8} = \frac{y - 3}{y^2 - 10y + 16} \cdot \frac{y - 8}{y^2 - 9} \]

Multiply by the reciprocal, \(\frac{y - 8}{y^2 - 9} \).

\[= \frac{y - 3}{(y - 2)(y - 8)} \cdot \frac{y - 8}{(y - 3)(y + 3)} \]

Factor \(y^2 - 10y + 16 \) and \(y^2 - 9 \).

\[= \frac{y - 3}{(y - 2)(y - 8)} \cdot \frac{y - 8}{1} \]

The GCF is \((y - 3)(y - 8) \).

\[= \frac{1}{(y - 2)(y + 3)} \]

Simplify.

Check Your Progress

Find each quotient.

5A. \[\frac{p^2 - 4}{5p} ÷ \frac{p - 2}{p + q} \]

5B. \[\frac{q^2 + 3q + 2}{12} ÷ \frac{q + 1}{q^2 + 4} \]
Check Your Understanding

Example 1
Find each product.
1. \(\frac{2x^2}{7x} \cdot \frac{14}{x} \)
2. \(\frac{3ab}{4c^4} \cdot \frac{16c^2}{9b} \)
3. \(\frac{t^2}{(t - 5)(t + 5)} \cdot \frac{t + 5}{6t} \)
4. \(\frac{8}{r + 1} \cdot \frac{r^2 - 1}{2} \)

Example 2
SLIGHTS The slowest land mammal is the three-toed sloth. It travels 0.07 mile per hour on the ground. What is this speed in feet per minute?

Example 3–5
Find each quotient.
7. \(\frac{8}{3x^2} \div \frac{4}{x} \)
8. \(\frac{c^5}{2} \div \frac{c^3}{6d^2} \)
9. \(\frac{b^2 + 6b + 5}{6b + 6} \div (b + 5) \)
10. \(\frac{2x + 8}{x + 3} \div \frac{x + 4}{x^2 + 6x + 9} \)

Practice and Problem Solving

Example 1
Find each product.
11. \(\frac{10n^2}{4} \cdot \frac{2}{n} \)
12. \(\frac{12c^3}{21b} \cdot \frac{14b^2}{6c} \)
13. \(\frac{x^3y}{2x^2} \cdot \frac{18x^4}{xy} \)
14. \(\frac{5c^3d}{c^2d} \cdot \frac{f^2d^3c}{10e^2} \)
15. \(\frac{9}{t - 2} \cdot \frac{(t + 2)(t - 2)}{3} \)
16. \(\frac{(a + 4)(a - 5)}{a^2} \cdot \frac{6a}{a + 4} \)
17. \(\frac{(k + 6)(k - 1)}{k + 2} \cdot \frac{(k + 1)(k + 2)}{(k + 1)(k - 1)} \)
18. \(\frac{(r - 8)(r + 3)}{r} \cdot \frac{2r}{(r + 8)(r + 3)} \)
19. \(\frac{n^2 + n - 2}{n + 2} \cdot \frac{4n}{n - 1} \)
20. \(\frac{y^2 - 1}{y^2 - 49} \cdot \frac{y - 7}{y + 1} \)

Example 2
MONEY A scarf bought in Italy cost 18 Euros. The exchange rate at the time was 1 U.S. dollar = 0.73 Euro.

a. How much did the scarf cost in U.S. dollars?

b. If the exchange rate at the time was 1 Canadian dollar = 0.69 Euro, how much did the scarf cost in Canadian dollars?

Example 3–5
Find each quotient.
21. \(\frac{x^5}{y} \div \frac{x}{y^2} \)
22. \(\frac{f^4gh^2}{x^2y} \div f^3g^2 \)
23. \(\frac{5x^2}{x^2 - 5x + 4} \div \frac{10x}{x - 1} \)
24. \(\frac{3x^4}{k^2} \div \frac{18r^3}{k} \)
25. \(\frac{21b^3}{4c^2} \div \frac{7}{6c^2} \)
26. \(\frac{6b - 12}{b + 5} \div (12b + 18) \)
27. \(\frac{k + 3}{k + 2} \div \frac{k}{5k + 10} \)
28. \(\frac{n^2 + 7n + 12}{16n^2} \div \frac{n + 3}{2n} \)
29. \(\frac{3a}{a^2 + 2a + 1} \div \frac{a - 1}{a + 1} \)

Lesson 11-4 Multiplying and Dividing Rational Expressions
33. **BEARS** A grizzly bear runs 110 feet in 5 seconds. What is the average speed of the
 bear in miles per hour?

34. **SEWING** The fabric that Megan wants to buy for a costume she is making costs
 $7.50 per yard. How many yards can she buy with $24?

35. **TRAVEL** An airplane is making a 1250-mile trip. Its average speed is 540 miles
 per hour.
 a. Write a division expression you can use to find the number of hours that the
 trip will take. Include the units.
 b. Find the quotient. Round to the nearest tenth.

36. **VOLUNTEERING** Tyree is passing out orange drink from a 3.5-gallon cooler. If
 each cup of orange drink is 4.25 ounces, about how many cups can he hand out?
 (Hint: There are 128 ounces in a gallon.)

37. **LAND** Louisiana loses about 30 square miles of land each year to coastal erosion,
 hurricanes, and other natural and human causes. Approximately how many
 square yards of land are lost per month? (Hint: Use the relationship 1 square mile
 = 3,097,600 square yards.)

38. **GEOMETRY** Write an expression to represent the
 length of the rectangle.

39. Convert each rate. Round to the nearest tenth if
 necessary.
 46 feet per second to miles per hour
 40. 29.5 meters per second to kilometers per hour
 41. 28 milliliters per second to cups per minute. (Hint: 1 liter ≈ 0.908 quarts)
 42. 32.4 meters per second to miles per hour. (Hint: 1 mile ≈ 1.609 kilometers)

43. **LIFE SCIENCE** A human heart pumps about a cup of blood each time it beats. On
 average, a person’s heart beats about 70 times a minute. Write and solve an
 expression to find how many gallons of blood are pumped per hour.

44. **GEOMETRY** Refer to the prism at the right.
 a. Find the volume in cubic inches.
 b. Use the ratio \(\frac{1 \text{ foot}^3}{1728 \text{ inches}^3} \) to write a multiplication
 expression to convert the volume to cubic feet. Then convert the volume.

45. Find each product. Describe what the final answer represents.
 45. $9.80 \text{ per hour} \cdot 15 \text{ hours} \cdot \frac{52 \text{ weeks}}{1 \text{ year}}$
 46. \(\frac{2.85 \text{ dollars}}{1 \text{ gallon of gasoline}} \cdot \frac{15 \text{ gallons}}{1 \text{ fill-up}} \cdot \frac{3 \text{ fill-ups}}{1 \text{ month}} \cdot \frac{1 \text{ month}}{30 \text{ days}} \)
 47. \(\frac{32 \text{ meters}}{1 \text{ second}} \cdot \frac{60 \text{ seconds}}{1 \text{ minute}} \cdot \frac{60 \text{ minutes}}{1 \text{ hour}} \cdot \frac{1 \text{ kilometer}}{1000 \text{ meters}} \cdot \frac{1 \text{ mile}}{1.609 \text{ kilometers}} \)
 48. \(\frac{32,000 \text{ dollars}}{1 \text{ year}} \cdot \frac{1 \text{ year}}{52 \text{ weeks}} \cdot \frac{1 \text{ week}}{40 \text{ hours}} \)

49. **SPACE** The highest speed at which any spacecraft has ever escaped from Earth is
 35,800 miles per hour by the New Horizons probe, which was launched in 2006.
 Convert this speed to feet per second. Round to the nearest tenth.
50. **ELECTRICITY** Simplify the expression below to find the cost of running a 3500-watt air conditioner for one week.

\[
\frac{3500 \text{ watts} \cdot \frac{1\ \text{kilowatt}}{1000\ \text{watts}}}{} \cdot \frac{168\ \text{hours}}{1\ \text{week}} \cdot \frac{10\ \text{cents}}{1\ \text{kilowatt} \cdot \text{hours}} \cdot \frac{1\ \text{dollar}}{100\ \text{cents}}
\]

51. **AMUSEMENT PARKS** In an amusement park ride, riders stand along the wall of a circular room with a radius of 3.1 meters. The room completes 27 rotations per minute.

a. Write an expression that you can use to find the number of meters the room moves per second. (*Hint:* The circumference of a circle is \(2\pi r\).)

b. Simplify the expression you wrote in Part a and describe what it means.

52. **AQUARIUMS** An aquarium is in the shape of a rectangular prism 30 inches long, 15 inches wide, and 18 inches high.

a. Sketch and label a diagram of the aquarium. Then find the volume of the tank in cubic inches.

b. Describe how to use the ratio \(\frac{\text{1ft}^3}{1728\ \text{in}^3}\) to find the volume of the tank in cubic feet. Then find the volume. Round to the nearest tenth.

c. Water weighs 62 pounds per cubic foot. How much would the water in the tank weigh if the tank were filled?

53. **FIND THE ERROR** Mei and Tamika are finding \(\frac{2x + 6}{x + 5} \div \frac{2}{x + 5}\). Is either of them correct? Explain.

<table>
<thead>
<tr>
<th>Mei</th>
<th>Tamika</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2x + 6}{x + 5} \div \frac{2}{x + 5})</td>
<td>(\frac{2x + 6}{x + 5} + \frac{2}{x + 5})</td>
</tr>
<tr>
<td>= (\frac{2x + 6}{x + 5} \cdot \frac{x + 5}{2})</td>
<td>= (\frac{2(x + 3)}{x + 5})</td>
</tr>
<tr>
<td>= (x + 6)</td>
<td>= (\frac{x}{(x + 3)(x + 5)})</td>
</tr>
</tbody>
</table>

54. **REASONING** Find the missing term. Justify your answer.

\[
? \div \frac{10x^3}{21} = \frac{3}{2x}
\]

55. **CHALLENGE** Find \(\frac{x^2 - 3x - 10}{x^2 + 2x - 35} \cdot \frac{x^2 + 4x - 21}{x^2 + 9x + 14}\). Write in simplest form.

56. **WRITING IN MATH** Give an example and describe how you could use dimensional analysis to solve a real-world problem involving rational expressions.

57. **OPEN ENDED** Give an example of a real-world situation that could be modeled by the quotient of two rational expressions. Provide an example of this quotient.

58. **WRITE A QUESTION** A classmate found that the product of two rational expressions is \(\frac{9x - 3}{(x + 3)(3x + 1)}\). She wants to find the excluded values. Write a question to help her solve the problem.

59. **WRITING IN MATH** Describe how to use dimensional analysis to find the number of hours in one year.
60. GEOMETRY The perimeter of a rectangle is 30 inches. Its area is 54 square inches. Find the length of the longest side.

A 6 inches
B 9 inches
C 12 inches
D 30 inches

61. Find \(\frac{c^2 - c - 6}{2c - 10} \div \frac{2c + 4}{3c - 15} \).

F \(\frac{3(c - 3)}{4} \)
H \(\frac{4(c - 3)}{3} \)
G \(\frac{c + 5}{c - 3} \)
J \(\frac{c - 3}{c - 5} \)

62. EXTENDED RESPONSE The weekly salaries of six employees at a fast food restaurant are $140, $220, $90, $180, $140, $200.

a. What is the mean of the six salaries?
b. What is the median of the six salaries?
c. What is the mode of the six salaries?

63. Tito has three times as many CDs as Dasan. Dasan has two thirds as many CDs as Brant. Brant has 27 CDs. How many CDs does Tito have?

A 54
B 27
C 18
D 32

64. \(\frac{20x^2y}{25xy} \)
65. \(\frac{14y^3l^2}{42gh^3} \)
66. \(\frac{64ql}{16q^2l^3} \)

67. \(\frac{y^2 + 10y + 16}{y + 2} \)
68. \(\frac{p^2 - 9}{p^2 - 5p + 6} \)
69. \(\frac{z^2 + z - 2}{z^2 - 3z + 2} \)

70. \(y = \frac{2}{x} \)
71. \(y = \frac{3}{x} + 5 \)
72. \(y = \frac{1}{x - 5} - 4 \)
73. \(y = \frac{1}{x + 3} \)
74. \(y = \frac{-1}{x + 6} + 7 \)
75. \(y = \frac{2}{x - 8} - 3 \)

76. FORESTRY The number of board feet \(B \) that a log will yield can be estimated by using the formula \(B = \frac{L}{16} (D^2 - 8D + 16) \), where \(D \) is the diameter in inches and \(L \) is the log length in feet. For logs that are 16 feet long, what diameter will yield approximately 256 board feet? (Lesson 8-6)

Find the degree of each polynomial. (Lesson 7-4)

77. 2
78. \(-3a\)
79. \(5x^2 + 3x\)
80. \(d^4 - 6e^2\)
81. \(2x^3 - 4z + 8xz\)
82. \(3d^4 + 5d^3 - 4c^2 + 1\)

83. DRIVING Tires should be kept within 2 pounds per square inch (psi) of the manufacturer’s recommended tire pressure. If the recommendation for a tire is 30 psi, what is the range of acceptable pressures? (Lesson 5-5)

Factor each polynomial. (Lessons 8-3 and 8-4)

84. \(x^2 - 18x - 40\)
85. \(x^2 - 5x + 6\)
86. \(x^2 - 2x - 24\)
87. \(3x^2 + 7x - 20\)
88. \(2x^2 + x - 15\)
89. \(8x^2 - 4x - 40\)
1. Determine whether the table represents an inverse variation. Explain.
 \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 8 \\ 4 & 4 \\ 8 & 2 \\ 16 & 1 \\ \hline \end{array}

Assume that \(y \) varies inversely as \(x \). Write an inverse variation equation that relates \(x \) and \(y \).
(Lesson 11-1)

2. \(y = 5 \) when \(x = 10 \)

3. \(y = -2 \) when \(x = 12 \)

Solve. Assume that \(y \) varies inversely as \(x \).
(Lesson 11-1)

4. If \(y = 6 \) when \(x = 3 \), find \(x \) when \(y = 5 \).

5. If \(y = 3 \) when \(x = 2 \), find \(y \) when \(x = 4 \).

State the excluded value for each function.
(Lesson 11-2)

6. \(y = \frac{2}{x} \)

7. \(y = \frac{1}{x - 6} \)

Identify the asymptotes of each function.
(Lesson 11-2)

8. \(y = \frac{3}{2x + 4} \)

9. \(y = \frac{2}{x - 4} \)

10. **MULTIPLE CHOICE** Jorge has \(x^2 + 5x + 6 \) square yards of carpet. He wants to carpet rooms that have areas of \(x^2 + 8x + 15 \) square yards. Write and simplify an expression to show how many rooms he can carpet.
 (Lesson 11-3)

 A \(\frac{x + 3}{x + 5} \)

 B \(\frac{x + 2}{x + 5} \)

 C \(\frac{x + 2}{x + 3} \)

 D \(\frac{x + 6}{x + 5} \)

Simplify each expression. State the excluded values of the variables.
(Lesson 11-3)

11. \(\frac{16x^2y^3}{8xy} \)

12. \(\frac{z - 5}{z^2 - 7z + 10} \)

13. \(\frac{3x - 15}{x^2 - 25} \)

Find each product.
(Lesson 11-4)

14. \(\frac{(x + 5)(x - 3)}{x^3} \cdot \frac{5x}{x - 3} \)

15. \(\frac{a^2 + 2a + 1}{a + 1} \cdot \frac{a - 1}{a^2 - 1} \)

16. \(\frac{m}{m^2 + 3m + 2} \cdot \frac{m + 2}{m^2} \)

Find the area of the rectangle.
(Lesson 11-4)

17. **MULTIPLE CHOICE** Find the area of the rectangle.

 \[
 \frac{x^3 - 4}{x + 3} \cdot \frac{x + 3}{x + 2}
 \]

 F \(\frac{x + 2}{x - 2} \)

 G \(\frac{x + 3}{x - 2} \)

 H \ 1

 J \(x - 2 \)

Find each quotient.
(Lesson 11-4)

18. \(\frac{x^4}{y^2} \div \frac{x}{y} \)

19. \(\frac{x + 3}{2x + 6} \div \frac{3x - 6}{4x - 8} \)

20. \(\frac{x^2 + 7x + 12}{x^2 - 25} \div \frac{x^2 - 9}{2x + 10} \)

21. **MOTOR VEHICLES** In 2005, the U.S. produced 4,411,300 motor vehicles. This was 10% of the total motor vehicle production for the whole world. How many motor vehicles were produced worldwide in 2005?
Dividing Polynomials

Why?

The equation below describes the distance \(d \) a horse travels when its initial velocity is \(4 \) m/s, its final velocity is \(v \) m/s, and its acceleration is \(a \) m/s\(^2\).

\[
d = \frac{v^2 - 4^2}{2a}
\]

There are different ways to simplify the expression.

Keep as one fraction.

\[
\frac{v^2 - 4^2}{2a} = \frac{v^2 - 16}{2a}
\]

Divide each term by 2a.

\[
\frac{v^2 - 4^2}{2a} = \frac{v^2}{2a} - \frac{4^2}{2a} = \frac{v^2}{2a} - \frac{8}{a}
\]

Divide Polynomials by Monomials To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

EXAMPLE 1

Divide Polynomials by Monomials

Find each quotient.

a. \((2x^2 + 16x) \div 2x \)

\[
(2x^2 + 16x) \div 2x = \frac{2x^2 + 16x}{2x}
\]

Write as a fraction.

\[
= \frac{2x^2}{2x} + \frac{16x}{2x}
\]

Divide each term by 2x.

\[
= \frac{2x^2}{x} + \frac{16x}{x}
\]

Divide out common factors.

\[
= 2x + 16
\]

Simplify.

b. \((b^2 + 12b - 14) \div 3b \)

\[
(b^2 + 12b - 14) \div 3b = \frac{b^2 + 12b - 14}{3b}
\]

Write as a fraction.

\[
= \frac{b^2}{3b} + \frac{12b}{3b} - \frac{14}{3b}
\]

Divide each term by 3b.

\[
= \frac{b^2}{3} + \frac{12b}{3} - \frac{14}{3b}
\]

Divide out common factors.

\[
= \frac{b}{3} + 4 - \frac{14}{3b}
\]

Simplify.

Check Your Progress

Find each quotient.

1A. \((3q^3 - 6q) \div 3q \)

1B. \((4t^5 - 5t^2 - 12) \div 2t^2 \)

1C. \((4r^6 + 3r^4 - 2r^2) \div 2r \)

1D. \((6w^3 - 3w) \div 4w^2 \)
Divide Polynomials by Binomials

You can also divide polynomials by binomials. When a polynomial can be factored and common factors can be divided out, write the division as a rational expression and simplify.

EXAMPLE 2 Divide a Polynomial by a Binomial

Find \((h^2 + 9h + 18) ÷ (h + 6)\).

\[
\begin{align*}
(h^2 + 9h + 18) ÷ (h + 6) &= \frac{h^2 + 9h + 18}{h + 6} \\
&= \frac{(h + 3)(h + 6)}{h + 6} \\
&= \frac{(h + 3)h}{h + 6} \\
&= h + 3
\end{align*}
\]

Write as a rational expression.

Factor the numerator.

Divide out common factors.

Simplify.

Check Your Progress

Find each quotient.

2A. \((b^2 - 2b - 15) ÷ (b + 3)\)

2B. \((x^2 + 11x + 24) ÷ (x + 8)\)

If the polynomial cannot be factored or if there are no common factors by which to divide, you can use long division.

EXAMPLE 3 Use Long Division

Find \((y^2 + 4y + 12) ÷ (y + 3)\) by using long division.

Step 1 Divide the first term of the dividend, \(y^2\), by the first term of the divisor, \(y\).

\[
y ÷ y = y
\]

Multiply \(y\) and \(y + 3\).

Subtract. Bring down the 12.

Step 2 Divide the first term of the partial dividend, \(1y\), by the first term of the divisor, \(y\).

\[
y + 1 ÷ y = y
\]

Subtract. Bring down the 12.

Multiply 1 and \(y + 3\).

Subtract.

So, \((y^2 + 4y + 12) ÷ (y + 3)\) is \(y + 1\) with a remainder of 9. This answer can be written as \(y + 1 + \frac{9}{y + 3}\).

Check Your Progress

3A. \((3x^2 + 9x - 15) ÷ (x + 5)\)

3B. \((n^2 + 6n + 2) ÷ (n - 2)\)
Real-World Example 4 Divide Polynomials to Solve a Problem

PARTIES The expression $5x + 250$ represents the cost of renting a picnic shelter and food for x people. The total cost is divided evenly among all the people except for the two who bought decorations. Find $(5x + 250) \div (x - 2)$ to determine how much each person pays.

$$
\begin{align*}
5x + 250 &= 250 + 5x \\
(x - 2)(5x) &= 10x - 5x \\
260 &= 5x \\
&\quad \text{So, } \frac{260}{x - 2} \text{ represents the amount each person pays.}
\end{align*}
$$

Check Your Progress

4. **GEOMETRY** The area of a rectangle is $(2x^2 + 10x - 1)$ square units, and the width is $(x + 1)$ units. What is the length?

When a dividend is written in standard form and a power is missing, add a term of that power with a coefficient of zero.

Example 5 Insert Missing Terms

Find $(c^3 + 5c - 6) \div (c - 1)$.

$$
\begin{align*}
c - 1(c^3 + 5c - 6) &= c^3 + 0c^2 + 5c - 6 \\
(-) c^3 - c^2 &= c^2 + 5c \\
\quad (-) c^2 - c &= 6c - 6 \\
\quad (-) 6c - 6 &= 0
\end{align*}
$$

So, $(c^3 + 5c - 6) \div (c - 1) = c^2 + c + 6$.

Check Your Progress Find each quotient.

5A. $(2r^3 + 2r^2 - 4) \div (r - 1)$

5B. $(x^4 + 2x^3 + 6x - 10) \div (x + 2)$

Check Your Understanding

Examples 1 and 2 pp. 700–701

Find each quotient.

1. $(8a^2 + 20a) \div 4a$

2. $(4z^3 + 1) \div 2z$

3. $(12n^3 - 6n^2 + 15) \div 6n$

4. $(t^2 + 5t + 4) \div (t + 4)$

5. $(x^2 + 3x - 28) \div (x + 7)$

6. $(x^2 + x - 20) \div (x - 4)$

Example 4 p. 702

7. **CHEMISTRY** The formula $y = \frac{400 + 3x}{50 + x}$ describes a mixture when x liters of a 25% solution are added to a 90% solution. Find $(400 + 3x) \div (50 + x)$.

Examples 3 and 5 pp. 701–702

Find each quotient. Use long division.

8. $(n^2 + 3n + 10) \div (n - 1)$

9. $(4y^2 + 8y + 3) \div (y + 2)$

10. $(4h^3 + 6h^2 - 3) \div (2h + 3)$

11. $(9n^3 - 13n + 8) \div (3n - 1)$
Practice and Problem Solving

Examples 1 and 2
Find each quotient.

12. \((14x^2 + 7x) \div 7x\)
13. \((a^3 + 4a^2 - 18a) \div a\)
14. \((5q^3 + q) \div q\)
15. \((6n^2 - 12n + 3) \div 3n\)
16. \((8k^2 - 6) \div 2k\)
17. \((9m^2 + 5m) \div 6m\)
18. \((a^2 + a - 12) \div (a - 3)\)
19. \((x^2 - 6x - 16) \div (x + 2)\)
20. \((r^2 - 12r + 11) \div (r - 1)\)
21. \((k^2 - 5k - 24) \div (k - 8)\)
22. \((y^2 - 36) \div (y^2 + 6y)\)
23. \((a^3 - 4a^2) \div (a - 4)\)
24. \((c^3 - 27) \div (c - 3)\)
25. \((4t^2 - 1) \div (2t + 1)\)
26. \((6x^3 + 16x^2 - 60x + 39) \div (2x + 10)\)
27. \((2h^3 + 8h^2 - 3h - 12) \div (h + 4)\)

Example 4

Find each quotient. Use long division.

28. **GEOMETRY**
The area of a rectangle is \((x^2 - 4x^2)\) square units, and the width is \((x - 4)\) units. What is the length?

29. **MANUFACTURING**
The expression \(-n^2 + 18n + 850\) represents the number of baseball caps produced by \(n\) workers. Find \((-n^2 + 18n + 850) \div n\) to write an expression for average number of caps produced per person.

Examples 3 and 5
Find each quotient. Use long division.

30. \((b^2 + 3b - 9) \div (b + 5)\)
31. \((a^2 + 4a + 3) \div (a - 1)\)
32. \((2y^2 - 3y + 1) \div (y - 2)\)
33. \((4n^2 - 3n + 6) \div (n - 2)\)
34. \((p^3 - 4p^2 + 9) \div (p - 1)\)
35. \((t^3 - 2t - 4) \div (t + 4)\)
36. \((6x^3 + 5x^2 + 9) \div (2x + 3)\)
37. \((8c^3 + 6c - 5) \div (4c - 2)\)

38. **GEOMETRY**
The volume of a prism with a triangular base is \(10w^3 + 23w^2 + 5w - 2\). The height of the prism is \(2w + 1\), and the height of the triangle is \(5w - 1\). What is the measure of the base of the triangle?
\(\text{Hint: } V = \frac{1}{2} Bh\)

Use long division to find the expression that represents the missing side.

39. \(A = x^2 - 3x - 18\)
40. \(A = 4x^2 + 16x + 16\)
41. Determine the quotient when \(x^3 + 11x + 14\) is divided by \(x + 2\).
42. What is \(14y^5 + 21y^4 - 6y^3 - 9y^2 + 32y + 48\) divided by \(2y + 3\)?

43. **FUNCTIONS**
Consider the function \(f(x) = \frac{3x + 4}{x - 1}\).

a. Rewrite the function as a quotient plus a remainder. Then graph the quotient, ignoring the remainder.

b. Graph the original function using a graphing calculator.

c. How are the graphs of the function and quotient related?

d. What happens to the graph near the excluded value of \(x\)?
44. **ROAD TRIP** The first Ski Club van has been on the road for 20 minutes, and the second van has been on the road for 35 minutes.

 a. Write an expression for the amount of time that each van has spent on the road after an additional t minutes.

 b. Write a ratio for the first van’s time on the road to the second van’s time on the road and use long division to rewrite this ratio as an expression. Then find the ratio of the first van’s time on the road to the second van’s time on the road after 60 minutes, 200 minutes.

45. **BOILING POINT** The temperature at which water boils decreases by about 0.9°F for every 500 feet you are above sea level. The boiling point at sea level is 212°F.

 a. Write an equation that gives the temperature T at which water boils x feet above sea level.

 b. Mount Whitney, the tallest point in California, is 14,494 feet above sea level. At approximately what temperature does water boil on Mount Whitney?

46. **MULTIPLE REPRESENTATIONS** In this problem, you will use picture models to help divide expressions.

 a. **ANALYTICAL** The first figure models $6^2 ÷ 7$. Notice that the square is divided into seven equal parts. What are the quotient and the remainder? What division problem does the second figure model?

 b. **CONCRETE** Draw figures for $3^2 ÷ 4$ and $2^2 ÷ 3$.

 c. **VERBAL** Do you observe a pattern in the previous exercises? Express this pattern algebraically.

 d. **ANALYTICAL** Use long division to find $x^2 ÷ (x + 1)$. Does this result match your expression from part c?

47. **FIND THE ERROR** Alvin and Andrea are dividing $c^3 + 6c - 4$ by $c + 2$. Is either of them correct? Explain your reasoning.

 Alvin

 $c^2 + 4c - 12$

 $c + 2 \left(c^3 + 6c - 4 \right)$

 $c^2 + 2c^2$

 $4c^2 - 4$

 $4c^2 + 8c$

 $-12c$

 $-12c - 24$

 24

 Andrea

 $c^2 - 2c + 10$

 $c + 2 \left(c^3 + 6c - 4 \right)$

 $c^2 + 2c$

 $-2c^2 + 6c$

 $-2c^2 - 4c$

 $10c - 4$

 $10c + 20$

 -24

48. **CHALLENGE** The quotient of two polynomials is $4x^2 - x - 7 + \frac{11x + 15}{x^2 + x + 2}$. What are the polynomials?

49. **OPEN ENDED** Write a division problem involving polynomials that you would solve by using long division. Explain your answer.

50. **WRITING IN MATH** Describe the steps to find $(w^2 - 2w - 30) ÷ (w + 7)$.

Real-World Link

The higher the altitude, the lower the temperature at which water boils. Tibet is at a high altitude. The temperature of boiling water in Tibet is lower than that of boiling water in the United States. Tibetans drink their tea while it is still boiling.

Source: Did You Know?
51. Simplify \(\frac{21x^3 - 35x^2}{7x} \).
 A. \(3x^2 - 5x \)
 B. \(4x^2 - 6x \)
 C. \(3x - 5 \)
 D. \(5x - 3 \)

52. EXTENDED RESPONSE
 The box shown is designed to hold rice.
 [Image of a box with dimensions 8 cm x 9 cm x 5 cm]
 a. How much rice would fit in the box?
 b. What is the area of the label on the box, if the label covers all surfaces?

53. Simplify \(\frac{x^2 + 7x + 12}{x^2 + 5x + 6} \).
 F. \(x + 4 \)
 G. \(\frac{x + 4}{x + 2} \)
 H. \(x + 2 \)
 J. \(\frac{x + 2}{x + 4} \)

54. Susana bought cards at 6 for $10. She decorated them and sold them at 4 for $10. She made $60 in profit. How many cards did she sell?
 A. 53
 B. 25
 C. 60
 D. 72

55. Find each product. (Lesson 11-4)
 \(\frac{3x^3}{8x} \cdot \frac{16}{x} \)
 \(\frac{3ad}{4c^4} \cdot \frac{8c^2}{6d} \)
 \(\frac{t^2}{(t - 4)(t + 4)} \cdot \frac{t - 4}{6t^4} \)
 \(\frac{10}{r - 2} \cdot \frac{r^2 - 4}{2} \)

56. Find the roots of each function. (Lesson 11-3)
 \(f(x) = \frac{x + 2}{x^2 - 6x + 8} \)
 \(f(x) = \frac{x^2 - 3x - 4}{x^2 - x - 12} \)
 \(f(x) = \frac{x^2 + 6x + 9}{x^2 - 9} \)

57. SHADOWS
 A 25-foot flagpole casts a shadow that is 10 feet long and the nearby building casts a shadow that is 26 feet long. How tall is the building? (Lesson 10-7)

58. Solve each equation. Check your solution. (Lesson 10-4)
 \(\sqrt{h} = 9 \)
 \(\sqrt{x + 3} = -5 \)
 \(3 + 5\sqrt{n} = 18 \)
 \(\sqrt{x - 5} = 2\sqrt{6} \)

59. Solve each equation by using the Quadratic Formula. Round to the nearest tenth if necessary. (Lesson 9-5)
 \(v^2 + 12v + 20 = 0 \)
 \(3t^2 - 7t - 20 = 0 \)
 \(5y^2 - y - 4 = 0 \)
 \(2w^2 = -(7w + 3) \)

60. THEATER
 The drama club is building a backdrop using arches with a shape that can be represented by the function \(f(x) = -x^2 + 2x + 8 \), where \(x \) is the length in feet. The area under each arch is to be covered with fabric. (Lesson 9-2)
 a. Graph the quadratic function and determine its \(x \)-intercepts.
 b. What is the height of the arch?

Skills Review

Find each sum. (Lesson 7-5)
 \(3a^2 + 2a - 12 \) + \(8a + 7 - 2a^2 \)
 \(2c^3 + 3cd - d^2 \) + \(-5cd - 2c^3 + 2d^3 \)

Find the least common multiple for each set of numbers.
 \(2, 4, 6 \)
 \(3, 6, 8 \)
 \(5, 12, 15 \)
 \(14, 18, 24 \)
Adding and Subtracting Rational Expressions

Why?
A survey asked families how often they eat takeout. To determine the fraction of those surveyed who eat takeout more than once a week, you can add. Remember that percents can be written as fractions with denominators of 100.

<table>
<thead>
<tr>
<th>2–3 times a week</th>
<th>plus</th>
<th>daily</th>
<th>equals more than once a week</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/100</td>
<td>8/100</td>
<td></td>
<td>38/100</td>
</tr>
</tbody>
</table>

Thus, \(\frac{38}{100} \) or 38% eat takeout more than once a week.

Add and Subtract Rational Expressions with Like Denominators To add or subtract rational expressions, add or subtract the numerators and write the sum or difference over the common denominator.

Key Concept
Let \(a, b, \) and \(c \) be polynomials with \(c \neq 0 \).

\[
\frac{a}{c} + \frac{b}{c} = \frac{a + b}{c} \quad \text{and} \quad \frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}
\]

EXAMPLE 1 Add Rational Expressions with Like Denominators
Find \(\frac{5n}{n + 3} + \frac{15}{n + 3} \).

The common denominator is \(n + 3 \).

Factor the numerator.

Divide by the common factor, \(n + 3 \).

Simplify.

Find each sum.
1A. \(\frac{8c}{6} + \frac{5c}{6} \)
1B. \(\frac{4t}{5xy} + \frac{7}{5xy} \)
1C. \(\frac{3y}{3 + y} + \frac{y^2}{3 + y} \)
EXAMPLE 2 Subtract Rational Expressions with Like Denominators

Find \(\frac{3m - 5}{m + 4} - \frac{4m + 2}{m + 4} \).

The common denominator is \(m + 4 \).

The additive inverse of \((4m + 2) \) is \(-(4m + 2) \).

Distributive Property

Simplify.

Check Your Progress

Find each difference.

2A. \(\frac{2h + 4}{h + 1} - \frac{5 + h}{h + 1} \)

2B. \(\frac{17h + 4}{15h - 5} - \frac{2h - 6}{15h - 5} \)

You can use additive inverses to form like denominators.

EXAMPLE 3 Inverse Denominators

Find \(\frac{3n}{n - 4} + \frac{6n}{4 - n} \).

Rewrite \(4 - n \) as \(-(n - 4) \).

Rewrite so the denominators are the same.

Subtract the numerators and simplify.

Check Your Progress

Find each sum or difference.

3A. \(\frac{t^2}{t - 3} + \frac{3}{3 - t} \)

3B. \(\frac{2p}{p - 1} - \frac{2p}{1 - p} \)

Add and Subtract Rational Expressions with Unlike Denominators The least common multiple (LCM) is the least number that is a multiple of two or more numbers or polynomials.

EXAMPLE 4 LCMs of Polynomials

Find the LCM of each pair of polynomials.

a. \(6x \) and \(4x^3 \)

Step 1 Find the prime factors of each expression.

\(6x = 2 \cdot 3 \cdot x \) \hspace{1cm} \(4x^3 = 2 \cdot 2 \cdot x \cdot x \cdot x \)

Step 2 Use each prime factor, 2, 3, and \(x \), the greatest number of times it appears in either of the factorizations.

\(6x = 2 \cdot 3 \cdot x \) \hspace{1cm} \(4x^3 = 2 \cdot 2 \cdot x \cdot x \cdot x \)

LCM = \(2 \cdot 2 \cdot 3 \cdot x \cdot x \cdot x \) or \(12x^3 \)
b. \(n^2 + 5n + 4 \) and \((n + 1)^2\)

\[
n^2 + 5n + 4 = (n + 1)(n + 4) \quad \text{Factor each expression.}
\]

\[
(n + 1)^2 = (n + 1)(n + 1)
\]

\((n + 1)\) is a factor twice in the second expression. \((n + 4)\) is a factor once.

\[
\text{LCM} = (n + 1)(n + 1)(n + 4) \text{ or } (n + 1)^2(n + 4)
\]

Check Your Progress

4A. \(8m^2t\) and \(12m^2t^3\)

4B. \(x^2 - 2x - 8\) and \(x^2 - 5x - 14\)

To add or subtract fractions with unlike denominators, you need to rename the fractions using the least common multiple of the denominators, called the least common denominator (LCD).

Key Concept

Add or Subtract Rational Expressions with Unlike Denominators

Step 1 Find the LCD.

Step 2 Write each rational expression as an equivalent expression with the LCD as the denominator.

Step 3 Add or subtract the numerators and write the result over the common denominator.

Step 4 Simplify if necessary.

Example 5

Add Rational Expressions with Unlike Denominators

Find \(\frac{3t + 2}{t^2 - 2t - 3} + \frac{t + 1}{t - 3}\). Find the LCD. Since \(t^2 - 2t - 3 = (t - 3)(t + 1)\), the LCD is \((t - 3)(t + 1)\).

\[
\frac{3t + 2}{t^2 - 2t - 3} + \frac{t + 1}{t - 3} = \frac{3t + 2}{(t - 3)(t + 1)} + \frac{t + 1}{t - 3}
\]

Factor \(t^2 - 2t - 3\).

Write \(\frac{t + 1}{t - 3}\) using the LCD.

Simplify.

Add the numerators.

Simplify.

Check Your Progress

5A. \(\frac{4d^2}{d} + \frac{d + 2}{d^2}\)

5B. \(\frac{b + 3}{b} + \frac{b - 5}{b + 1}\)
The formula \(\text{time} = \frac{\text{distance}}{\text{rate}} \) is helpful in solving real-world applications.

Real-World Example 6 Add Rational Expressions

Hang Gliding For the first 5000 meters, a hang glider travels at a rate of \(x \) meters per minute. Then, due to a stronger wind, it travels 6000 meters at a speed that is 3 times as fast.

a. Write an expression to represent how much time the hang glider is flying.

Understand For the first 5000 meters, the hang glider’s speed is \(x \). For the last 6000 meters, the hang glider’s speed is \(3x \).

Plan Use the formula \(d = rt \) or \(t = \frac{d}{r} \) to represent the time \(t \) of each section of the hang glider’s trip, with rate \(r \) and distance \(d \).

Solve

- Time to fly 5000 meters: \(t = \frac{5000}{x} \) \(d = 5000 \text{ m}, \ r = x \)
- Time to fly 6000 meters: \(t = \frac{6000}{3x} \) \(d = 6000 \text{ m}, \ r = 3x \)
- Total flying time: \(\frac{5000}{x} + \frac{6000}{3x} \) The LCD is \(3x \).
 \[
 \frac{5000}{x} + \frac{6000}{3x} = \frac{5000}{x} \left(\frac{3}{3} \right) + \frac{6000}{3x}
 = \frac{15000}{3x} + \frac{6000}{3x}
 = \frac{21000}{3x} \text{ or } \frac{7000}{x}
 \]
 Multiply.
 Simplify.

Check

- Let \(x = 1 \) in the original expression.
- Simplify.
- Let \(x = 1 \) in the answer expression. Simplify.

Since the expressions have the same value for \(x = 1 \), they are equivalent. So, the answer is reasonable. \(\checkmark \)

b. If the hang glider is flying at a rate of 600 meters per minute for the first 5000 meters, find the total amount of time that the hang glider is flying.

\[
\frac{7000}{x} = \frac{7000}{600} \quad \text{Substitute 600 for } x \text{ in the expression.}
\]

\[\approx 11.7 \quad \text{Simplify.} \]

So, the hang glider is flying for approximately 11.7 minutes.

c. If the hang glider flew for approximately 15 minutes, find the rate the hang glider flew for the first 5000 meters.

\[
\frac{7000}{x} = 15 \quad \text{Set the expression equal to } 15.
\]

\[7000 = 15x \quad \text{Multiply each side by } x. \]

\[446.7 \approx x \quad \text{Divide each side by 15 and simplify.} \]

The hang glider was flying at a rate of 446.7 meters per minute.

Check Your Progress 6. Trains A train travels 5 miles from Lynbrook to Long Beach and then back. The train travels about 1.2 times as fast returning from Long Beach. If \(r \) is the train’s speed from Lynbrook to Long Beach, write and simplify an expression for the total time of the round trip.
To subtract rational expressions with unlike denominators, rename the expressions using the LCD. Then subtract the numerators.

EXAMPLE 7 Subtract Rational Expressions with Unlike Denominators

Find \(\frac{5}{x} - \frac{2x + 1}{4x} \).

Check Your Progress

Find each sum or difference.

7A. \(\frac{6}{y} + 3 - \frac{7}{y} \)

7B. \(\frac{y}{y - 3} - \frac{2}{y^2 + y - 12} \)

Check Your Understanding

Examples 1–3

pp. 706–707

Find each sum or difference.

1. \(\frac{3}{7n} + \frac{2}{7n} \)
2. \(\frac{x + 8}{2} + \frac{x}{2} \)
3. \(\frac{14r}{9 - r} - \frac{2r}{r - 9} \)
4. \(\frac{7}{5t} - \frac{3 + t}{5t} \)

Example 4

pp. 707–708

Find the LCM of each pair of polynomials.

5. \(3t, 8t^2 \)
6. \(5m + 15, 2m + 6 \)
7. \((x^2 - 8x + 7), (x^2 + x - 2) \)

Examples 5 and 7

pp. 708 and 710

Find each sum or difference.

8. \(\frac{6}{n^4} + \frac{2}{n^2} \)
9. \(\frac{3}{4x} + \frac{2}{5y} \)
10. \(\frac{4}{5n} - \frac{1}{10n^3} \)

11. \(\frac{8}{3c} - \frac{5}{6d} \)
12. \(\frac{a}{a + 4} + \frac{6}{a + 2} \)
13. \(\frac{x}{x - 3} - \frac{3}{x + 2} \)

Example 6

p. 709

14. **EXERCISE** Joseph walks 10 times around the track at a rate of \(x \) laps per hour. He runs 8 times around the track at a rate of \(3x \) laps per hour. Write and simplify an expression for the total time it takes him to go around the track 18 times.

Practice and Problem Solving

Examples 1–3

pp. 706–707

Find each sum or difference.

15. \(\frac{a}{4} + \frac{3a}{4} \)
16. \(\frac{1}{6m} + \frac{5m}{6m} \)
17. \(\frac{5y}{6} - \frac{y}{6} \)
18. \(\frac{11}{4r} - \frac{-1}{4r} \)
19. \(\frac{8b}{ab} + \frac{3a}{ab} \)
20. \(\frac{t + 2}{3} + \frac{t + 5}{3} \)
21. \(\frac{3c - 7}{2c - 1} + \frac{2c + 1}{1 - 2c} \)
22. \(\frac{15x}{33x - 9} + \frac{3}{9 - 33x} \)
23. \(\frac{n + 6}{10} - \frac{n + 1}{10} \)
24. \(\frac{5x + 2}{2x + 5} - \frac{x - 8}{2x + 5} \)
25. \(\frac{w + 2}{8w} - \frac{2w - 3}{8w} \)
26. \(\frac{3a + 1}{a - 1} - \frac{a + 4}{a - 1} \)
Examples 5 and 7

pp. 708 and 710

Example 4

pp. 707–708

Find the LCM of each pair of polynomials.

27. \(x^3y, x^2y^2\)
28. \(5ab, 10b\)
29. \((3r - 1), (r + 2)\)

30. \(2n - 10, 4n - 20\)
31. \((x^2 + 9x + 18), x + 3\)
32. \((k^2 - 2k - 8), (k + 2)^2\)

Find each sum or difference.

33. \(\frac{5}{4x} + \frac{1}{10x}\)
34. \(\frac{6}{r} + \frac{2}{r^2}\)
35. \(\frac{3}{2a} + \frac{1}{5b}\)

36. \(\frac{6g}{g + 5} - \frac{g - 2}{2g}\)
37. \(\frac{7}{4k + 8} - \frac{k}{k + 2}\)
38. \(\frac{5}{2d + 2} - \frac{d}{d + 5}\)

39. \(\frac{-2}{7r} + \frac{4}{t}\)
40. \(\frac{n}{n - 2} + \frac{n}{n + 1}\)
41. \(\frac{d}{d + 5} + \frac{7}{d - 1}\)

42. \(\frac{4}{a} - \frac{1}{3a}\)
43. \(\frac{6}{5t^2} - \frac{2}{3t}\)
44. \(\frac{7}{4r} - \frac{3}{t}\)

45. \(\frac{w - 3}{w^2 - w - 20} + \frac{w}{w + 4}\)
46. \(\frac{n}{2n + 10} + \frac{1}{n^2 - 25}\)

47. \(\frac{2x}{x^2 + 8x + 15} - \frac{x + 3}{x + 5}\)
48. \(\frac{r - 3}{r^2 + 6r + 9} - \frac{r - 9}{r^2 - 9}\)

Example 6

p. 709

49. TRAVEL Grace walks to her friend’s house 2 miles away and then jogs back home. Her jogging speed is 2.5 times her walking speed \(w\).

- a. Write and simplify an expression to represent the amount of time Grace spends going to and coming from her friend’s house.
- b. If Grace walks about 3.5 miles per hour, how many minutes did she spend going to and coming from her friend’s house?

50. BOATS A boat travels 3 miles downstream at a rate \(x\) miles per hour faster than the current, or \(x + 2\) miles per hour. It then travels 6 miles upstream at a rate \(x - 2\) miles per hour slower than the current, or \(x - 2\) miles per hour.

- a. Write and simplify an expression to represent the total time it takes the boat to travel 3 miles downstream and 6 miles upstream.
- b. If the rate of the current \(x\) is 4 miles per hour, how long did it take the boat to travel the 9 miles?

51. SCHOOL Mr. Kim had 18 more geometry tests to grade than algebra tests. He graded 12 tests on Saturday and 20 tests on Sunday. Write an expression for the fraction of tests he graded if \(a\) represents the number of algebra tests.

52. PLAYS A total of 1248 people attended the school play. The same number \(x\) attended each of the two Sunday performances. There were twice as many people at the Saturday performance than at both Sunday performances. Write an expression to represent the fraction of people who attended the Saturday performance.

Find each sum or difference.

53. \(\frac{x + 5}{x^2 - 4} - \frac{3}{x^2 - 4}\)
54. \(\frac{18y}{9y + 2} - \frac{-4}{-2 - 9y}\)

55. \(\frac{k^2 - 26}{k - 5} - \frac{1}{5 - k}\)
56. \(\frac{8}{c - 1} + \frac{c}{1 - c}\)

57. \(\frac{2}{x - 1} + \frac{3}{x + 1} - \frac{4x - 2}{x^2 - 1}\)
58. \(\frac{x^2 - x - 12}{x^2 - 11x + 30} - \frac{x - 4}{18 - x}\)

59. \(\frac{a^2 - 5a}{3a - 18} - \frac{7a - 36}{3a - 18}\)
60. \(\frac{8n - 3}{n^2 + 8n + 12} - \frac{5n - 9}{n^2 + 8n + 12}\)

61. \(\frac{x^2 - 16}{x^3} + \frac{x^3 + 1}{x^4}\)
62. \(\frac{x}{7x - 3} + \frac{x + 2}{15x + 30}\)

63. \(\frac{5x}{3x^2 + 19x - 14} - \frac{1}{9x^2 - 12x + 4}\)
64. \(\frac{2x + 7}{x^2 - y^2} + \frac{-5}{x^2 - 2xy + y^2}\)
65. **TRIATHLONS** In a sprint triathlon, athletes swim 400 meters, bike 20 kilometers, and run 5 kilometers. An athlete bikes 12 times as fast as she swims and runs 5 times as fast as she swims.

 a. Simplify \(\frac{400}{x} + \frac{20,000}{12x} + \frac{5000}{5x} \), an expression that represents the time it takes the athlete to complete the sprint triathlon.

 b. If the athlete swims 40 meters per minute, find the total time it takes her to complete the triathlon.

66. **GEOMETRY** Write an expression for the perimeter of each figure.

67. \(\frac{5a + b}{a + b} \)

68. \(\frac{5r}{2q + 6r} \)

69. **BIKES** Marina rides her bike at an average rate of 10 miles per hour. On one day, she rides 9 miles and then rides around a large loop \(x \) miles long. On the second day, she rides 5 miles and then rides around the loop three times.

 a. Write an expression to represent the total time she spent riding her bike on those two days. (Hint: Use \(t = \frac{d}{r} \), where \(t \) is time, \(d \) is distance, and \(r \) is rate.) Then simplify the expression.

 b. If the loop is 2 miles long, how long did Marina ride her bike on those two days?

70. **TRAVEL** The Showalter family drives 80 miles to a college football game. On the return trip home, their average speed is about 3 miles per hour slower.

 a. Let \(x \) represent the average speed of the car on the way to the game. Write and simplify an expression to represent the total time it took driving to the game and then back home.

 b. If their average speed on the way to the game was 68 miles per hour, how long did it take the Showalter family to drive to the game and back? Round to the nearest tenth.

71. **H.O.T. Problems** Use Higher-Order Thinking Skills

 a. **CHALLENGE** Find \(\left(\frac{4}{7y - 2} + \frac{7y}{2 - 7y} \right) \left(\frac{y + 5}{6} - \frac{y + 3}{6} \right) \).

 b. **WRITING IN MATH** Describe in words the steps you use to find the LCM in an addition or subtraction of rational expressions with unlike denominators.

 c. **CHALLENGE** Is the following statement sometimes, always, or never true? Explain your reasoning.

 \[\frac{a}{x} + \frac{b}{y} = \frac{ay + bx}{xy} \]

 d. **OPEN ENDED** Describe a real-life situation that could be expressed by adding two rational expressions that are fractions. Explain what the denominator and numerator represent in both expressions.

 e. **WRITING IN MATH** Describe how to add rational expressions with denominators that are additive inverses.
76. SHORT RESPONSE An object is launched upwards at 19.6 meters per second from a 58.8-meter-tall platform. The equation for the object’s height \(h \) meters at time \(t \) seconds after launch is \(h(t) = -4.9t^2 + 19.6t + 58.8 \). How long after the launch does the object strike the ground?

77. Simplify \(\frac{2}{5} + \frac{3}{25} + \frac{1}{10} \).
 - A \(\frac{2}{5} \)
 - B \(\frac{3}{5} \)
 - C \(\frac{31}{50} \)
 - D \(\frac{5}{31} \)

78. STATISTICS Courtney has grades of 84, 65, and 76 on three math tests. What grade must she obtain on the next test to have an average of exactly 80 for the four tests?
 - F 84
 - G 80
 - H 98
 - J 95

79. Simplify \(\frac{2}{x} + \frac{3}{x^2} + \frac{1}{2x} \).
 - A \(\frac{3x + 2}{x^2} \)
 - B \(\frac{6}{2x^2} \)
 - C \(\frac{5x + 6}{2x^2} \)
 - D \(\frac{6 + x}{x^2} \)

80. Find each quotient. (Lesson 11-5)
 - (Lesson 11-5)
 - \((6x^2 + 10x) ÷ 2x \)
 - \((15y^3 + 14y) ÷ 3y \)
 - \((10a^3 - 20a^2 + 5a) ÷ 5a \)

81. Convert each rate. Round to the nearest tenth if necessary. (Lesson 11-4)
 - 23 feet per second to miles per hour
 - 118 milliliters per second to quarts per hour (Hint: 1 liter \(\approx \) 1.06 quarts)

82. Find the length of the missing side. If necessary, round to the nearest hundredth. (Lesson 10-5)
 - \(\frac{3}{x} \)
 - \(\frac{x}{7} \)
 - \(\frac{x}{12} \)

83. AMUSEMENT The height \(h \) in feet of a car above the exit ramp of a free-fall ride can be modeled by \(h(t) = -16t^2 + s \). \(t \) is the time in seconds after the car drops, and \(s \) is the starting height of the car in feet. If the designer wants the ride to last 3 seconds, what should the starting height of the car be in feet? (Lesson 8-6)

84. Express each number in scientific notation. (Lesson 7-3)
 - 12,300
 - 0.0000375
 - 1,255,000

85. MONEY Ruben has $13 to order pizza. The pizza costs $7.50 plus $1.25 per topping. He plans to tip 15% of the total cost of the pizza. Write and solve an inequality to find out how many toppings he can order. (Lesson 5-3)

86. Skills Review
 - Find each quotient. (Lesson 11-4)
 - \(\frac{12}{3x^2} ÷ \frac{6}{x} \)
 - \(\frac{g^4}{2} ÷ \frac{8}{8d^2} \)
 - \(\frac{4y - 8}{y + 1} ÷ (y - 2) \)
Mixed Expressions and Complex Fractions

Why?
A Top Fuel dragster can cover $\frac{1}{4}$ mile in $4\frac{2}{5}$ seconds. The average speed in miles per second can be described by the expression below. It is called a complex fraction.

$$\frac{\text{1/4 mile}}{4\frac{2}{5} \text{ seconds}}$$

Simplify Mixed Expressions
An expression like $2 + \frac{4}{x + 1}$ is called a mixed expression because it contains the sum of a monomial, 2, and a rational expression, $\frac{4}{x + 1}$. You can use the LCD to change a mixed expression to a rational expression.

EXAMPLE 1
Change Mixed Expression to Rational Expressions

Write $2 + \frac{4}{x - 1}$ as a rational expression.

$$2 + \frac{4}{x - 1} = \frac{2(x - 1)}{x - 1} + \frac{4}{x - 1}$$

$$= \frac{2(x - 1) + 4}{x - 1}$$

$$= \frac{2x - 2 + 4}{x - 1}$$

$$= \frac{2x + 2}{x - 1}$$

The LCD is $x - 1$.
Add the numerators.
Distributive Property
Simplify.

Check Your Progress
Write each mixed expression as a rational expression.
1A. $2 + \frac{5}{x}$
1B. $\frac{6y}{4y + 8} + 5y$

Simplify Complex Fractions
A complex fraction has one or more fractions in the numerator or denominator. You can simplify by using division.

numerical complex fraction algebraic complex fraction

$$\frac{\frac{2}{3}}{\frac{5}{8}} = \frac{2}{3} \div \frac{5}{8}$$
$$= \frac{2}{3} \times \frac{8}{5}$$
$$= \frac{16}{15}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \div \frac{c}{d}$$
$$= \frac{a}{b} \times \frac{d}{c}$$
$$= \frac{ad}{bc}$$

To simplify a complex fraction, write it as a division expression. Then find the reciprocal of the second expression and multiply.
EXAMPLE 2 Use Complex Fractions to Solve Problems

RACING Refer to the application at the beginning of the lesson. Find the average speed of the Top Fuel dragster in miles per minute.

\[
\frac{\frac{1}{4} \text{ mile}}{4\frac{2}{5} \text{ seconds}} = \frac{\frac{1}{4} \text{ mile}}{4\frac{2}{5} \text{ seconds}} \times \frac{60 \text{ seconds}}{1 \text{ minute}}
\]

Convert seconds to minutes. Divide by common units.

\[
= \frac{\frac{1}{4} \times 60}{4\frac{2}{5}}
\]

Simplify.

\[
= \frac{60}{\frac{22}{5}}
\]

Express each term as an improper fraction.

\[
= \frac{60 \times 5}{22}
\]

Use the rule \(\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc} \).

\[
= \frac{60 \times 5}{22}
\]

Simplify.

\[
= \frac{75}{22} \text{ or } 3\frac{9}{22}
\]

So, the average speed of the Top Fuel dragster is 3\(\frac{9}{22}\) miles per minute.

Check Your Progress

2. RACING Refer to the information about the Jr. Dragster at the left. What is the average speed of the car in feet per second?

A Jr. Dragster is a half-scale version of a Top Fuel dragster. This car, which can go \(\frac{1}{8}\) mile in \(7\frac{9}{10}\) seconds, is designed to be driven by kids ages 8–17 in the NHRA Jr. Drag Racing League.

Source: NHRA

To simplify complex fractions, you can either use the rule as in Example 2, or you can rewrite the fraction as a division expression, as shown below.

EXAMPLE 3 Complex Fractions Involving Monomials

Simplify \(\frac{8t^2}{v^3} \div \frac{4t}{v^3}\).

\[
\frac{8t^2}{v^3} = \frac{8t^2}{v} \div \frac{4t}{v^3}
\]

Write as a division expression.

\[
= \frac{8t^2}{v} \times \frac{v^3}{4t}
\]

To divide, multiply by the reciprocal.

\[
= \frac{8t^2}{v} \times \frac{v^3}{4t}
\]

Divide by the common factors 4t and v and simplify.

\[
= \frac{8t^2}{v} \times \frac{v^2}{4t}
\]

\[
= \frac{2t^2}{v} \text{ or } 2tv^2
\]

Check Your Progress

Simplify each expression.

3A. \(\frac{g^3h}{b} \div \frac{gh^3}{b^2}\)

3B. \(\frac{-24n^3y^5}{p^3h} \div \frac{16pm^2}{t^4h}\)
Complex fractions may also involve polynomials.

EXAMPLE 4 Complex Fractions Involving Polynomials

Simplify each expression.

a. \[\frac{2}{y + 3} \div \frac{5}{y^2 - 9}\]

\[= \frac{2}{y + 3} \times \frac{y^2 - 9}{5}\]

\[= \frac{2}{y + 3} \times \frac{(y - 3)(y + 3)}{5}\]

\[= \frac{2}{y + 3} \times \frac{(y - 3)(1)}{5}\]

\[= \frac{2(y - 3)}{5}\]

Write as a division sentence.

To divide, multiply by the reciprocal.

Factor \(y^2 - 9\).

Divide by the GCF, \(y + 3\).

Simplify.

b. \[\frac{n^2 + 7n - 18}{n^2 - 2n + 1} \div \frac{n^2 - 81}{n - 1}\]

\[= \frac{n^2 + 7n - 18}{n^2 - 2n + 1} \times \frac{n - 1}{n^2 - 81}\]

\[= \frac{(n - 2)(n + 9)}{(n - 1)(n - 1)} \times \frac{n - 1}{(n - 9)(n + 9)}\]

\[= \frac{(n - 2)(1)}{(n - 1)(1)} \times \frac{1}{(n - 9)(1)}\]

\[= \frac{n - 2}{(n - 1)(n - 9)}\]

Write as a division sentence.

Multiply by the reciprocal.

Factor the polynomials.

Divide out the common factors.

Simplify.

Check Your Progress

a. \[\frac{a + 7}{\frac{4}{a^2 - 49}} \div \frac{10}{c - d}\]

\[= \frac{a + 7}{\frac{4}{a^2 - 49}} \times \frac{a^2 - 49}{10}\]

\[= \frac{(a + 7)(a^2 - 49)}{4 \times 10}\]

\[= \frac{(a + 7)(a + 7)(a - 7)}{40}\]

\[= \frac{(a + 7)^2(a - 7)}{40}\]

b. \[\frac{x + 4}{x^2 + 6x + 8} \div \frac{1}{2x - 2}\]

\[= \frac{x + 4}{x^2 + 6x + 8} \times \frac{2x - 2}{1}\]

\[= \frac{(x + 4)(2x - 2)}{(x + 4)(x + 4)}\]

\[= \frac{2x - 2}{x + 4}\]

4A. \[\frac{x + 4}{x - 1} \div \frac{x^2 + 6x + 8}{2x - 2}\]

4B. \[\frac{n^2 + 4n - 21}{n^2 - 9n + 18} \div \frac{n^2 + 3n - 28}{n^2 - 10n + 24}\]
Check Your Understanding

Example 1 p. 714 Write each mixed expression as a rational expression.
1. $\frac{2}{n} + 4$
2. $r + \frac{1}{3r}$
3. $6 + \frac{5}{t + 1}$
4. $\frac{x + 7}{2x} - 5x$

Example 2 p. 715 ROWING Rico rowed a canoe $2 \frac{1}{2}$ miles in $\frac{1}{3}$ hour.
 a. Write an expression to represent his speed in miles per hour.
 b. Simplify the expression to find his average speed.

Examples 3 and 4 pp. 715–716 Simplify each expression.
6. $\frac{2\frac{1}{3}}{1\frac{2}{5}}$
7. \(\frac{4}{5} \div \frac{6\frac{2}{3}}{3} \)
8. $\frac{a^2}{b^3} \div \frac{a}{x}$
9. $\frac{y^4}{x^2} \div \frac{2x^2}{y^2}$
10. $\frac{r + s}{x^2 - y^2}$
11. \(\frac{2 + q}{q^2 - 4} \div \frac{q + 4}{q^2 - 6q + 8} \)
12. $\frac{p + 3}{p^2 + 4p + 3} \div \frac{p^2 + 6p + 9}{p^2}$

Practice and Problem Solving

Example 1 p. 714 Write each mixed expression as a rational expression.
14. $10 + \frac{6}{f}$
15. $p - \frac{7}{2p}$
16. $5a - \frac{2a}{b}$
17. $3h + \frac{1 + h}{h}$
18. $t + \frac{v + w}{v - w}$
19. $n^2 + \frac{n - 1}{n + 4}$
20. $(k + 2) + \frac{k - 1}{k - 2}$
21. $(d - 6) + \frac{d + 1}{d - 7}$
22. $\frac{h - 3}{h + 5} - (h + 2)$

Example 2 p. 715 READING Ebony reads $6\frac{3}{4}$ pages of a book in 9 minutes. What is her average reading rate in pages per minute?

23. HORSES A thoroughbred can run $\frac{1}{2}$ mile in about $\frac{3}{4}$ minute. What is the horse’s speed in miles per hour?

Examples 3 and 4 pp. 715–716 Simplify each expression.
25. $\frac{2\frac{2}{3}}{3\frac{1}{3}}$
26. $\frac{5\frac{3}{5}}{2\frac{1}{7}}$
27. $\frac{8^2}{h^3} \div \frac{8}{h^2}$
28. $\frac{5n^4}{p^3} \div \frac{6n^2}{5p}$
29. $\frac{2\frac{2}{3}}{a + 6}$
30. $\frac{t + 5}{t^2 - t - 30}$
31. $\frac{j^2 - 16}{j^2 + 10j + 16}$
32. $\frac{x - 3}{x^2 + 3x + 2}$
33. COOKING The Centralville High School Cooking Club has 12\(\frac{1}{2} \) pounds of flour with which to make tortillas. There are $3\frac{3}{4}$ cups of flour in a pound, and it takes about $\frac{1}{3}$ cup of flour per tortilla. How many tortillas can they make?
34. **SCOOTER** The velocity \(v \) of an object spinning in a circle equals the circumference of the circle divided by the time it takes the object to complete one revolution \(T \).

a. Use the variables \(v, r \) (the radius of the circle), and \(T \) to write a formula describing the velocity of a spinning object.

b. A scooter has tires with a radius of \(3\frac{1}{2} \) inches. The tires make one revolution every \(\frac{1}{10} \) second. Find the speed in miles per hour. Round to the nearest tenth.

35. **SCIENCE** The density of an object equals \(\frac{m}{V} \), where \(m \) is the mass of the object and \(V \) is the volume. The densities of four metals are shown in the table. Identify the metal of each ball described below. (Hint: The volume of a sphere is \(V = \frac{4}{3}\pi r^3 \).)

<table>
<thead>
<tr>
<th>Metal</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>copper</td>
<td>8900</td>
</tr>
<tr>
<td>gold</td>
<td>19,300</td>
</tr>
<tr>
<td>iron</td>
<td>7800</td>
</tr>
<tr>
<td>lead</td>
<td>11,300</td>
</tr>
</tbody>
</table>

a. A metal ball has a mass of 15.6 kilograms and a radius of 0.0748 meter.

b. A metal ball has a mass of 285.3 kilograms and a radius of 0.1819 meter.

36. **SIRENS** As an ambulance approaches, the siren sounds different than if it were sitting still. If the ambulance is moving toward you at \(v \) miles per hour and blowing the siren at a frequency of \(f \), then you hear the siren as if it were blowing at a frequency \(h \). This can be defined by the equation \(h = \frac{f}{1 - \frac{v}{s}} \), where \(s \) is the speed of sound, approximately 760 miles per hour.

a. Suppose a siren blows at 45 cycles per minute and is moving toward you at 65 miles per hour. Find the frequency of the siren as you hear it.

b. Simplify the complex fraction in the formula.

Simplify each expression.

37. \[15 - \frac{17x + 5}{5x + 10} \]

38. \[\frac{b}{b + 3} + \frac{2}{b^2 - 2b - 8} \]

39. \[\frac{1 + \frac{2c^2 - 6c - 10}{c + 7}}{2c + 1} \]

40. \[y - \frac{12}{y - 4} \]

41. \[y - \frac{18}{y - 3} \]

42. \[\frac{x^2 - 4x - 32}{x + 1} + \frac{x^2 + 6x + 8}{x^2 - 1} \]

43. **REASONING** Describe the first step to simplify the expression below.

\[\frac{\left(\frac{y}{x} - \frac{x}{y} \right)}{x + y} \]

44. **REASONING** Is the expression \(\frac{n}{1 - \frac{5}{p}} + \frac{n}{\frac{5}{p} - 1} \) sometimes, always, or never equal to 0? Explain.

45. **CHALLENGE** Simplify the rational expression below.

\[\frac{1}{t - 1} + \frac{1}{t + 1} \]

46. **OPEN ENDED** Write a complex fraction that, when simplified, results in \(\frac{1}{x} \).

47. **WRITING IN MATH** Explain how complex fractions can be used to solve a problem involving distance, rate, and time. Give an example.
48. A number is greater than 44 squared and less than 45 squared. 5 squared is one of its factors, and it is a multiple of 13. Find the number.

A 1950
B 2000
C 2025
D 1975

49. SHORT RESPONSE Bernard is reading a 445-page book. He has already read 157 pages. If he reads 24 pages a day, how long will it take him to finish the book?

50. GEOMETRY Angela wanted a round rug to fit her room that is 16 feet wide. The rug should just meet the edges. What is the area of the rug rounded to the nearest tenth?

A 100.5 ft
B 50.3 ft
C 804.2 sq ft
D 201.1 sq ft

51. Simplify $7x + 10 \div 2xy$.

A $7x + 10 \div 2xy$
B $7x + 10 \div 2xy$
C $17 \div 2xy$
D $7\div x^2y$

Spiral Review

Find each sum or difference. (Lesson 11-6)

52. $\frac{6}{7x} - \frac{5 + x}{7x}$
53. $\frac{4}{d - 1} + \frac{d}{1 - d}$
54. $\frac{3q + 2}{2q + 1} + \frac{q - 5}{2q + 1}$
55. $\frac{2}{5m} - \frac{1}{15m^3}$
56. $\frac{10}{3g} - \frac{-3}{4h}$
57. $\frac{b}{b + 3} + \frac{6}{b - 2}$

Find each quotient. Use long division. (Lesson 11-5)

58. $(x^2 - 2x - 30) \div (x + 7)$
59. $(a^2 + 4a - 22) \div (a - 3)$
60. $(3q^2 + 20q + 11) \div (q + 6)$
61. $(3y^3 + 8y^2 + y - 7) \div (y + 2)$
62. $(6t^3 - 9t^2 + 6) \div (2t - 3)$
63. $(9h^3 + 5h - 8) \div (3h - 2)$

64. GEOMETRY Triangle ABC has vertices A(7, -4), B(-1, 2), and C(5, -6). Determine whether the triangle has three, two, or no sides that are equal in length. (Lesson 10-6)

Graph each function. Determine the domain and range. (Lesson 10-1)

65. $y = 2\sqrt{x}$
66. $y = -3\sqrt{x}$
67. $y = \frac{1}{4}\sqrt{x}$

Factor each polynomial. If the polynomial cannot be factored, write prime. (Lesson 8-5)

68. $x^2 - 81$
69. $a^2 - 121$
70. $n^2 + 100$
71. $-25 + 4y^2$
72. $p^4 - 16$
73. $4t^4 - 4$

74. PARKS A youth group traveling in two vans visited Mammoth Cave in Kentucky. The number of people in each van and the total cost of a tour of the cave are shown in the table. Find the adult price and the student price of the tour. (Lesson 6-3)

<table>
<thead>
<tr>
<th>Van</th>
<th>Number of Adults</th>
<th>Number of Students</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5</td>
<td>$77</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>7</td>
<td>$95</td>
</tr>
</tbody>
</table>

Skills Review

Solve each equation. (Lesson 2-2 and 2-3)

75. $6x = 24$
76. $5y - 1 = 19$
77. $2t + 7 = 21$
78. $p^3 = -4.2$
79. $\frac{2m + 1}{4} = -5.5$
80. $\frac{3}{4^8} = \frac{1}{2}$

Lesson 11-7 Mixed Expressions and Complex Fractions 719
Then
You solved proportions. (Lesson 2-6)

Now
- Solve rational equations.
- Use rational equations to solve problems.

HS-NPO-S-PNO4 Students will justify the solution steps in simplifying expressions or solving an equation.

New Vocabulary
rational equation
extraneous solution
work problem
rate problem

glencoe.com
- Extra Examples
- Personal Tutor
- Self-Check Quiz
- Homework Help
- Math in Motion

Why?
Oceanic species of dolphins can swim 5 miles per hour faster than coastal species of dolphins. An oceanic dolphin can swim 3 miles in the same time that it takes a coastal dolphin to swim 2 miles.

<table>
<thead>
<tr>
<th>Dolphins</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Distance</td>
<td>Rate</td>
<td>Time</td>
</tr>
<tr>
<td>coastal</td>
<td>2 miles</td>
<td>x mph</td>
<td>t</td>
</tr>
<tr>
<td>oceanic</td>
<td>3 miles</td>
<td>x + 5 mph</td>
<td>t</td>
</tr>
</tbody>
</table>

Since \(\text{time} = \frac{\text{distance}}{\text{rate}} \), the equation below represents this situation.

\[
\frac{3}{x + 5} = \frac{2}{x}
\]

Solve Rational Equations A rational equation contains one or more rational expressions. When a rational equation is a proportion, you can use cross products to solve it.

EXAMPLE 1 Use Cross Products to Solve Equations

DOLPHINS Refer to the information above. Solve \(\frac{3}{x + 5} = \frac{2}{x} \) to find the speed of a coastal dolphin. Check the solution.

\[
\frac{3}{x + 5} = \frac{2}{x}
\]

Original equation

\[
3x = 2(x + 5)
\]

Find the cross products.

\[
3x = 2x + 10
\]

Distributive Property

\[
x = 10
\]

Subtract 2x from each side.

So, a coastal dolphin can swim 10 miles per hour.

CHECK \(\frac{3}{x + 5} = \frac{2}{x} \)

Original equation

\[
\frac{3}{10 + 5} = \frac{2}{10}
\]

Replace x with 10.

\[
\frac{3}{15} = \frac{2}{10}
\]

Simplify.

\[
\frac{1}{5} = \frac{1}{5}
\]

Simplify.

Check Your Progress
Solve each equation. Check the solution.

1A. \(\frac{7}{y - 3} = \frac{3}{y + 1} \)

1B. \(\frac{13}{10} = \frac{2f + 0.2}{7} \)
Another method that can be used to solve any rational equation is to find the LCD of all the fractions in the equation. Then multiply each side of the equation by the LCD to eliminate the fractions. This method works for any rational equation.

Example 2
Use the LCD to Solve Rational Equations

Solve \(\frac{4}{y} + \frac{5y}{y + 1} = 5 \). Check the solution.

Step 1 Find the LCD.

The LCD of \(\frac{4}{y} \) and \(\frac{5y}{y + 1} \) is \(y(y + 1) \).

Step 2 Multiply each side of the equation by the LCD.

\[
\left(\frac{1}{y(y + 1)} \cdot \frac{4}{1} \right) + \left(\frac{y(y + 1)}{1} \cdot \frac{5y}{y + 1} \right) = y(y + 1)(5)
\]

\[
(y + 1)4 + y(5y) = y(y + 1)(5)
\]

\[
4y + 4 + 5y^2 = 5y^2 + 5y
\]

\[
4y + 4 + 5y^2 - 5y^2 = 5y^2 - 5y^2 + 5y
\]

\[
4y + 4 = 5y
\]

\[
4y - 4y + 4 = 5y - 4y
\]

\[
4 = y
\]

CHECK

\[
\frac{4}{y} + \frac{5y}{y + 1} = 5 \quad \text{Original equation}
\]

\[
\frac{4}{4} + \frac{5(4)}{4 + 1} \neq 5 \quad \text{Replace } y \text{ with } 4.
\]

\[
\frac{4}{4} + \frac{20}{5} \neq 5 \quad \text{Simplify.}
\]

\[
5 = 5 \quad \text{Simplify.}
\]

Check Your Progress

Solve each equation. Check your solutions.

2A. \(\frac{2b - 5}{b - 2} - 2 = \frac{3}{b + 2} \)

2B. \(1 + \frac{1}{c + 2} = \frac{28}{c^2 + 2c} \)

2C. \(\frac{y + 2}{y - 2} - \frac{2}{y + 2} = \frac{7}{3} \)

2D. \(\frac{n}{3n + 6} - \frac{n}{5n + 10} = \frac{2}{5} \)

Recall that any value of a variable that makes the denominator of a rational expression zero, must be excluded from the domain.

In the same way, when a solution of a rational equation results in a zero in the denominator, that solution must be excluded. Such solutions are called extraneous solutions.

\[
\frac{4 + x}{x - 5} + \frac{1}{x} = \frac{2}{x + 1}
\]

5, 0, and \(-1\) cannot be solutions.
EXAMPLE 3 Extraneous Solutions

Solve \(\frac{2n}{n - 5} + \frac{4n - 30}{n - 5} = 5 \). State any extraneous solutions.

\[
\frac{2n}{n - 5} + \frac{4n - 30}{n - 5} = 5 \\
(n - 5)\left(\frac{2n}{n - 5} + \frac{4n - 30}{n - 5}\right) = (n - 5)5 \\
\left(\frac{1}{1} \cdot \frac{2n}{n - 5}\right) + \left(\frac{1}{1} \cdot \frac{4n - 30}{n - 5}\right) = (n - 5)5 \\
2n + 4n - 30 = 5n - 25 \\
6n - 30 = 5n - 25 \\
6n - 5n - 30 = 5n - 5n - 25 \\
n - 30 = -25 \\
n = 5
\]

Since \(n = 5 \) results in a zero in the denominator of the original equation, it is an extraneous solution. So, the equation has no solution.

Check Your Progress

3. Solve \(\frac{n^2 - 3n}{n^2 - 4} - \frac{10}{n^2 - 4} = 2 \). State any extraneous solutions.

Use Rational Equations to Solve Problems You can use rational equations to solve work problems, or problems involving work rates.

Real-World EXAMPLE 4 Work Problem

JOBS At his part-time job at the zoo, Ping can clean the bird area in 2 hours. Natalie can clean the same area in 1 hour and 15 minutes. How long would it take them if they worked together?

Understand It takes Ping 2 hours to complete the job and Natalie \(1\frac{1}{4} \) hours.

You need to find the rate that each person works and the total time \(t \) that it will take them if they work together.

Plan Find the fraction of the job that each person can do in an hour.

Ping’s rate \(\rightarrow \frac{1 \text{ job}}{2 \text{ hours}} = \frac{1}{2} \text{ job per hour} \)

Natalie’s rate \(\rightarrow \frac{1 \text{ job}}{1\frac{1}{4} \text{ hours}} \) or \(\frac{1 \text{ job}}{\frac{5}{4} \text{ hours}} = \frac{4}{5} \text{ job per hour} \)

Since rate \(\cdot \) time = fraction of job done, multiply each rate by the time \(t \) to represent the amount of the job done by each person.
Lesson 11-8 Rational Equations

Problem:

Ping completes \(\frac{1}{2}t\) plus \(\frac{4}{5}t\) of a job, and Natalie completes \(\frac{4}{5}t\) of a job. Together, they complete 1 job.

\[
\frac{1}{2}t + \frac{4}{5}t = 1
\]

Solution:

1. Multiply each side by the LCD, 10.

 \[
 10\left(\frac{1}{2}t + \frac{4}{5}t\right) = 10(1)
 \]

 \[
 10\left(\frac{1}{2}t\right) + 10\left(\frac{4}{5}t\right) = 10
 \]

2. Distributive Property

 \[
 5t + 8t = 10
 \]

4. Add like terms and divide each side by 13.

 \[
 t = \frac{10}{13}
 \]

So, it would take them \(\frac{10}{13}\) hour or about 46 minutes to complete the job if they work together.

Check:

In \(\frac{10}{13}\) hour, Ping would complete \(\frac{1}{2} \cdot \frac{10}{13}\) or \(\frac{5}{13}\) of the job and Natalie would complete \(\frac{4}{5} \cdot \frac{10}{13}\) or \(\frac{8}{13}\) of the job. Together, they complete \(\frac{5}{13} + \frac{8}{13}\) or 1 whole job. So, the answer is reasonable.

Check Your Progress

4. **RAKING** Jenna can rake the leaves in the yard in 2 hours. It takes her brother Benjamin 3 hours. How long would it take them if they worked together?

Rational equations can also be used to solve rate problems.

Real-World Example 5: Rate Problem

AIRPLANES An airplane takes off and flies an average of 480 miles per hour. Another plane leaves 15 minutes later and flies to the same city traveling 560 miles per hour. How long will it take the second plane to pass the first plane?

Record the information that you know in a table like the one shown below.

<table>
<thead>
<tr>
<th>Plane</th>
<th>Distance</th>
<th>Rate</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(d)</td>
<td>480 mi/h</td>
<td>(t) hours</td>
</tr>
<tr>
<td>2</td>
<td>(d)</td>
<td>560 mi/h</td>
<td>(t - \frac{1}{4}) hours</td>
</tr>
</tbody>
</table>

Since both planes will have traveled the same distance when Plane 2 passes Plane 1, you can write the following equation.

\[
480 \cdot t = 560 \cdot \left(t - \frac{1}{4}\right)
\]

\[
distance = rate \cdot time
\]

\[
480t = 560t - 140
\]

Distribute Property

\[
simplify\cdot
\]

\[
480t = 560t - 140
\]

Subtract 560t from each side.

\[
t = 1.75
\]

So, the second plane passes the first plane after 1.75 hours.

Check Your Progress

5. Lenora leaves the house walking at 3 miles per hour. After 10 minutes, her mother leaves the house riding a bicycle at 10 miles per hour. How many minutes after Lenora left the house will her mother catch up to her?
Chapter 11
Rational Equations

Check Your Understanding

Solve each equation. State any extraneous solutions.

1. \(\frac{2}{x + 1} = \frac{4}{x} \)
2. \(\frac{t + 3}{5} = \frac{2t + 3}{9} \)
3. \(\frac{a + 3}{a} - \frac{6}{5a} = \frac{1}{a} \)
4. \(4 - \frac{p}{p - 1} = \frac{2}{p - 1} \)
5. \(\frac{2t}{t + 1} + \frac{4}{t - 1} = 2 \)
6. \(\frac{x + 3}{x^2 - 1} - \frac{2x}{x - 1} = 1 \)

Example 4
pp. 722–723

7. WEERING Maurice can weed the garden in 45 minutes. Olinda can weed the garden in 50 minutes. How long would it take them to weed the garden if they work together?

Example 5
p. 723

8. LANDSCAPING Hunter is filling a 3.5-gallon bucket to water plants at a faucet that flows at a rate of 1.75 gallons a minute. If he were to add a hose that flows at a rate of 1.45 gallons per minute, how many minutes would it take him to fill the bucket? Round to the nearest tenth.

Practice and Problem Solving

Solve each equation. State any extraneous solutions.

9. \(8 = \frac{3}{n} - \frac{5}{n} \)
10. \(\frac{6}{t + 2} = \frac{4}{t} \)
11. \(\frac{3g + 2}{12} = \frac{g}{2} \)
12. \(\frac{5h}{4} + \frac{1}{2} = \frac{3h}{8} \)
13. \(\frac{2}{3w} = \frac{2}{15} + \frac{12}{5w} \)
14. \(\frac{c - 4}{c + 1} = \frac{c}{c - 1} \)
15. \(\frac{x - 1}{x + 1} - \frac{2x}{x - 1} = -1 \)
16. \(\frac{y + 4}{y - 2} + \frac{6}{y - 2} = \frac{1}{y + 3} \)
17. \(\frac{a}{a + 3} + \frac{a^2}{a + 3} = 2 \)
18. \(\frac{12}{a + 3} + \frac{6}{a^2 - 9} = \frac{8}{a + 3} \)
19. \(\frac{3n}{n - 1} + \frac{6n - 9}{n - 1} = 6 \)
20. \(\frac{n^2 - n - 6}{n^2 - n} - \frac{n - 5}{n - 1} = \frac{n - 3}{n^2 - n} \)

Example 4
pp. 722–723

21. PAINTING It takes Noah 3 hours to paint one side of a fence. It takes Gilberto 5 hours. How long would it take them if they worked together?

22. DISHWASHING Ron works as a dishwasher and can wash 500 plates in two hours and 15 minutes. Chris can finish the 500 plates in 3 hours. About how long would it take them to finish all of the plates if they work together?

Example 5
p. 723

23. ICE One ice machine makes 30 pounds of ice in a 24-hour period. Another ice machine makes 25 pounds of ice in a 24-hour period. How many hours would it take both machines to make 60 pounds of ice? Round to the nearest tenth.

24. CYCLING Two cyclists travel in opposite directions around a 5.6-mile circular trail. They start at the same time. The first cyclist completes the trail in 22 minutes and the second cyclist completes the trail in 28 minutes. At what time do they pass each other?

GRAPHING CALCULATOR For each rational function, a) describe the shape of the graph, b) use factoring to simplify the function, and c) determine the roots of the function.

25. \(f(x) = \frac{x^2 - x - 30}{x - 6} \)
26. \(f(x) = \frac{x^3 + x^2 - 2x}{x + 2} \)
27. \(f(x) = \frac{x^3 + 6x^2 + 12x}{x} \)

28. PAINTING Morgan can paint a standard-sized house in about 5 days. For his latest job, Morgan hires two assistants. At what rate must these assistants work for Morgan to meet a deadline of two days?
29. **AIRPLANES** Headwinds push against a plane and reduce its total speed, while tailwinds push on a plane and increase its total speed. Let \(w \) equal the speed of the wind, \(r \) equal the speed set by the pilot, and \(s \) equal the total speed.

a. Write an equation for the total speed with a headwind and an equation for the total speed with a tailwind.

b. Use the rate formula to write an equation for the distance traveled by a plane with a headwind and another equation for the distance traveled by a plane with a tailwind. Then solve each equation for time instead of distance.

30. **MIXTURES** A pitcher of fruit juice has 3 pints of pineapple juice and 2 pints of orange juice. Erin wants to add more orange juice so that the fruit juice mixture is 60% orange juice. Let \(x \) equal the pints of orange juice that she needs to add.

a. Copy and complete the table below.

<table>
<thead>
<tr>
<th>Juice</th>
<th>Pints of Orange Juice</th>
<th>Total Pints of Juice</th>
<th>Percent of Orange Juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Mixture</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Mixture</td>
<td>(2 + x)</td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

b. Write and solve an equation to find the pints of orange juice to add.

31. **DORMITORIES** The number of hours \(h \) it takes to clean a dormitory varies inversely with the number of people cleaning it \(c \) and directly with the number of people living there \(p \).

a. Write an equation showing how \(h \), \(c \), and \(p \) are related. (Hint: Include the constant \(k \).)

b. It takes 8 hours for 5 people to clean the dormitory when there are 100 people there. How long will it take to clean the dormitory if there are 10 people cleaning and the number of people living in the dorm stays the same?

Solve each equation. State any extraneous solutions.

32. \(\frac{4b + 2}{b^2 - 3b} + \frac{b + 2}{b} = \frac{b - 1}{b} \)

33. \(\frac{x^2 - x - 6}{x + 2} + \frac{x^3 + x^2}{x} = 3 \)

34. \(\frac{y^2 + 5y - 6}{y^3 - 2y^2} = \frac{5}{y} - \frac{6}{y^3 - 2y^2} \)

35. \(\frac{x - \frac{6}{5}}{x - \frac{10}{2}} - \frac{x - \frac{10}{2}}{x - 5} = \frac{x + 21}{x^2 - 5x} \)

H.O.T. Problems

36. **CHALLENGE** Solve \(\frac{2x}{x - 2} + \frac{x^2 + 3x}{(x + 1)(x - 2)} = \frac{2}{(x + 1)(x - 2)}. \)

37. **REASONING** How is an excluded value of a rational expression related to an extraneous solution of a corresponding rational equation? Explain.

38. **OPEN ENDED** Write a problem about a real-world situation where work is being done. Write an equation that models the situation.

39. **REASONING** Find a counterexample for the following statement.

 The solution of a rational equation can never be zero.

40. **WRITING IN MATH** Describe the steps for solving a rational equation that is not a proportion.
41. It takes Cheng 4 hours to build a fence. If he hires Odell to help him, they can do the job in 3 hours. If Odell built the same fence alone, how long would it take him?

A. \(\frac{5}{7} \) hours
B. \(\frac{2}{3} \) hours
C. 8 hours
D. 12 hours

42. Zoe, Taryn, and Evan run at equal rates. In the 1000-meter race, Zoe finished 200 meters ahead of Taryn and 400 meters ahead of Evan. When Taryn finished, how far was she ahead of Evan?

F. 400 m
H. 150 m
G. 200 m
J. 100 m

43. Twenty gallons of lemonade were poured into two containers of different sizes. Express the amount of lemonade poured into the smaller container in terms of \(g \), the amount poured into the larger container.

A. \(g + 20 \)
B. 20 + \(g \)
C. \(g - 20 \)
D. 20 - \(g \)

44. GRIDDED RESPONSE The gym has 2-kilogram and 5-kilogram disks for weight lifting. They have fourteen disks in all. The total weight of the 2-kilogram disks is the same as the total weight of the 5-kilogram disks. How many 2-kilogram disks are there?

Simplify each expression. (Lesson 11-7)

45. \(\frac{c^2}{d} \div \frac{c^3}{d^2} \)
46. \(\frac{5a^3}{b^2} \div \frac{6a^2}{5b^3} \)
47. \(\frac{2}{b} \div \frac{4}{b - 3} \)
48. \(\frac{q - 2}{g} \div \frac{q^2 - 6q + 8}{12} \)

Find the LCM of each pair of polynomials. (Lesson 11-6)

49. \(2h, 4h^2 \)
50. \(5c^2, 12c^3 \)
51. \(x - 4, x + 2 \)
52. \(p - 7, 2(p - 14) \)

Look for a pattern in each table of values to determine which model best describes the data. (Lesson 9-9)

53.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

54.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

55.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

56.

<table>
<thead>
<tr>
<th>(x)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

57. GENETICS Brown genes \(B \) are dominant over blue genes \(b \). A person with genes \(BB \) or \(Bb \) has brown eyes. Someone with genes \(bb \) has blue eyes. Mrs. Dunn has brown eyes with genes \(Bb \), and Mr. Dunn has blue eyes. Write an expression for the possible eye coloring of their children. Then find the probability that a child would have blue eyes. (Lesson 7-8)

Solve each inequality. Check your solution. (Lesson 5-2)

58. \(\frac{b}{10} \leq 5 \)
59. \(-7 > -\frac{r}{7} \)
60. \(\frac{5}{8}y \geq -15 \)

Skills Review

Determine the probability of each event if you randomly select a marble from a bag containing 9 red marbles, 6 blue marbles, and 5 yellow marbles. (Lesson 0-11)

61. \(P(\text{blue}) \)
62. \(P(\text{red}) \)
63. \(P(\text{not yellow}) \)
Chapter Summary

Key Concepts

Inverse Variation (Lesson 11-1)
- You can use \(\frac{x_1}{x_2} = \frac{y_2}{y_1} \) to solve problems involving inverse variation.

Rational Functions (Lesson 11-2)
- Excluded values are values of a variable that result in a denominator of zero.
- Vertical asymptotes occur at excluded values.

Rational Expressions (Lessons 11-3 and 11-4)
- Multiplying rational expressions is similar to multiplying rational numbers.
- Divide rational expressions by multiplying by the reciprocal of the divisor.

Dividing Polynomials (Lesson 11-5)
- To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Adding and Subtracting Rational Expressions (Lesson 11-6)
- Rewrite rational expressions with unlike denominators using the least common denominator (LCD). Then add or subtract.

Complex Fractions (Lesson 11-7)
- Simplify complex fractions by writing them as division problems.

Solving Rational Equations (Lesson 11-8)
- Use cross products to solve rational equations with a single fraction on each side of the equals sign.

Vocabulary Check

State whether each sentence is true or false. If false, replace the underlined word, phrase, expression, or number to make a true sentence.

1. The least common multiple for \(x^2 - 25 \) and \(x - 5 \) is \(x - 5 \).
2. When the product of two variables remains the same, the relationship forms an inverse variation.
3. The x-coordinate of the vertical asymptotes of a rational function represents the excluded values.
4. A rational expression is a fraction in which the numerator and denominator are fractions.
5. The excluded values for \(\frac{x}{x^2 + 5x + 6} \) are \(-2 \) and \(-3 \).
6. The equation \(\frac{3x}{x - 2} = \frac{6}{x - 2} \) has an extraneous solution, 2.
7. A rational expression has one or more fractions in the numerator and denominator.
8. The expression \(\frac{1}{3} \) can be simplified to \(\frac{2}{3} \).
9. A direct variation can be represented by an equation of the form \(k = xy \), where \(k \) is a nonzero constant.
10. The rational function \(y = \frac{2}{x - 1} + 3 \) has a horizontal asymptote at \(y = 3 \).

Key Vocabulary

- asymptote (p. 679)
- complex fraction (p. 714)
- excluded value (p. 678)
- extraneous solutions (p. 721)
- inverse variation (p. 670)
- least common denominator (LCD) (p. 708)
- least common multiple (LCM) (p. 707)
- mixed expression (p. 714)
- product rule (p. 671)
- rate problems (p. 723)
- rational equation (p. 720)
- rational expression (p. 684)
- rational function (p. 678)
- work problems (p. 722)
Lesson-by-Lesson Review

11-1 Inverse Variation (pp. 669–676)

Solve. Assume that \(y \) varies inversely as \(x \).

11. If \(y = 4 \) when \(x = 1 \), find \(x \) when \(y = 12 \)
12. If \(y = -1 \) when \(x = -3 \), find \(y \) when \(x = -9 \)
13. If \(y = 1.5 \) when \(x = 6 \), find \(y \) when \(x = -16 \)

14. **PHYSICS** A 135-pound person sits 5 feet from the center of a seesaw, and a 108-pound person is on the other end. How far from the center should the 108-pound person sit to balance the seesaw?

EXAMPLE 1

If \(y \) varies inversely as \(x \) and \(y = 28 \) when \(x = 42 \), find \(y \) when \(x = 56 \).

Let \(x_1 = 42 \), \(x_2 = 56 \), and \(y_1 = 28 \). Solve for \(y_2 \).

\[\frac{x_1}{x_2} = \frac{y_2}{y_1} \]

Proportion for inverse variation

\[\frac{42}{56} = \frac{y_2}{28} \]

Substitution

\[1176 = 56y_2 \]

Cross multiply.

\[21 = y_2 \]

Thus, \(y = 21 \) when \(x = 56 \).

11-2 Rational Functions (pp. 677–683)

State the excluded value for each function.

15. \(y = \frac{1}{x - 3} \)
16. \(y = \frac{2}{2x - 5} \)
17. \(y = \frac{3}{3x - 6} \)
18. \(y = \frac{-1}{2x + 8} \)

19. **PIZZA PARTY** Katelyn ordered pizza and soda for her study group for $38. The cost per person \(y \) is given by \(y = \frac{38}{x} \), where \(x \) is the number of people in the study group. Graph the function and describe the asymptotes.

EXAMPLE 2

State the excluded value for the function \(y = \frac{1}{4x + 16} \).

Set the denominator equal to zero.

\[4x + 16 = 0 \]

Subtract 16 from each side.

\[4x = -16 \]

Simplify.

\[x = -4 \]

Divide each side by 4.

11-3 Rational Expressions (pp. 684–691)

Simplify each expression.

20. \(\frac{2xy^2}{16xyz} \)
21. \(\frac{x + 4}{x^2 + 12x + 32} \)
22. \(\frac{x^2 + 10x + 21}{x^3 + x^2 - 42x} \)
23. \(\frac{y^2 - 25}{y^2 + 3y - 10} \)
24. \(\frac{3x^3}{3x^3 + 6x^2} \)
25. \(\frac{8y^2}{8y^4 + 16y^3} \)

State the excluded values for each function.

26. \(y = \frac{x}{x^2 + 9x + 18} \)
27. \(y = \frac{10}{6x^2 + 7x - 3} \)

EXAMPLE 3

Simplify \(\frac{a^2 - 7a + 12}{a^2 - 13a + 36} \).

Factor and simplify.

\[\frac{a^2 - 7a + 12}{a^2 - 13a + 36} = \frac{(a - 3)(a - 4)}{(a - 9)(a - 4)} \]

Factor.

\[\frac{a - 3}{a - 9} \]

Simplify.
11-4 Multiplying and Dividing Rational Expressions

Find each product or quotient.

28. \(\frac{6x^2y^4}{12} \cdot \frac{3x^3y^2}{xy}\)
29. \(\frac{3x - 6}{x^2 - 9} \div \frac{x + 3}{x^2 - 2x}\)
30. \(\frac{x^2}{x + 4} \div \frac{3x}{x^2 - 16}\)
31. \(\frac{3b - 12}{b + 4} \div (b^2 - 6b + 8)\)
32. \(\frac{2a^2 + 7a - 15}{a + 5} \div \frac{9a^2 - 4}{3a + 2}\)

33. GEOMETRY Find the area of the picture frame shown in simplest form.

EXAMPLE 4

Find \(\frac{7b^2}{9} \cdot \frac{6a^2}{b}\).

\[
\frac{7b^2}{9} \cdot \frac{6a^2}{b} = \frac{42a^2b^2}{9b} = \frac{14a^2b}{3}
\]

EXAMPLE 5

Find \(\frac{x^2 - 25}{x^2 - 9} \div \frac{x + 5}{x - 3}\).

\[
\frac{x^2 - 25}{x^2 - 9} \div \frac{x + 5}{x - 3} = \frac{(x + 5)(x - 5)}{(x + 3)(x - 3)} \div \frac{x + 5}{x - 3}
\]

\[
= \frac{(x + 5)(x - 5)}{(x + 3)(x - 3)} \cdot \frac{x - 3}{x + 5}
\]

\[
= \frac{x - 5}{x + 3}
\]

11-5 Dividing Polynomials

Find each quotient.

34. \((x^3 - 2x^2 - 22x + 21) \div (x - 3)\)
35. \((x^3 + 7x^2 + 10x - 6) \div (x + 3)\)
36. \((5x^2y^2 - 10x^2y + 5xy) \div 5xy\)
37. \((48y^2 + 8y + 7) \div (12y - 1)\)

38. GEOMETRY The area of a rectangle is \(x^2 + 7x + 13\). If the length is \(x + 4\), what is the width of the rectangle?

EXAMPLE 6

Find \((4x^2 + 17x - 1) \div (4x + 1)\).

\[
\frac{4x^2 + 17x - 1}{4x + 1}
\]

\[
= \frac{x + 4}{4x + 1}
\]

\[
= \frac{16x - 1}{16x + 4}
\]

\[
= \frac{-5}{4x + 1}
\]

The quotient is \(x + 4 - \frac{5}{4x + 1}\).

11-6 Adding and Subtracting Rational Expressions

Find each sum or difference.

39. \(\frac{5a}{b} - \frac{2a}{b}\)
40. \(-\frac{3}{2n - 3} + \frac{2n}{2n - 3}\)
41. \(\frac{3}{y + 1} - \frac{y}{y - 3}\)
42. \(\frac{1}{x + 1} + \frac{3}{x - 2}\)

43. DESIGN Miguel is decorating a room that is \(\frac{2x}{x + 4}\) feet long and \(\frac{8}{x + 4}\) wide. What is the perimeter of the room he is designing?

EXAMPLE 7

Find \(\frac{x^2}{x + 1} + \frac{2x + 1}{x + 1}\).

\[
\frac{x^2}{x + 1} + \frac{2x + 1}{x + 1} = \frac{x^2 + 2x + 1}{x + 1}
\]

\[
= \frac{(x + 1)(x + 1)}{x + 1}
\]

\[
= x + 1
\]

For mixed problem-solving practice, see page 855.
11-7 Mixed Expressions and Complex Fractions (pp. 714–719)

Simplify each expression.

44. \(\frac{a^2b^4}{c^2} \)
45. \(\frac{y + 9}{y + 4} \)
46. \(\frac{x^2 - 25}{x^2 - 4} \)
47. \(\frac{x - \frac{35}{x + 2}}{x + \frac{42}{x + 13}} \)

48. **FABRICS** Donna makes tablecloths to sell at craft fairs. A small one takes one-half yard of fabric, a medium one takes five-eighths yard, and a large one takes one and one-quarter yard.

a. How many yards of fabric does she need to make one of each size of tablecloth?

EXAMPLE 8

Simplify \(\frac{x + 3}{6} \div \frac{x^2 - 2x - 15}{x} \).

Write as a division expression.

\[\frac{x + 3}{6} \div \frac{x^2 - 2x - 15}{x} = \frac{x + 3}{6} \cdot \frac{x}{x^2 - 2x - 15} \]

\[= \frac{x + 3}{6} \cdot \frac{x}{(x + 3)(x - 5)} \]

\[= \frac{x}{6(x - 5)} \]

11-8 Rational Equations and Functions (pp. 720–727)

Solve each equation. State any extraneous solutions.

49. \(\frac{5n}{6} + \frac{1}{n - 2} = \frac{n + 1}{3(n - 2)} \)
50. \(\frac{4x}{3} + \frac{7}{2} = \frac{7x}{12} - 14 \)
51. \(\frac{11}{2x} + \frac{2}{4x} = \frac{1}{4} \)
52. \(\frac{1}{x + 4} - \frac{1}{x - 1} = \frac{2}{x^2 + 3x - 4} \)
53. \(\frac{1}{n - 2} = \frac{n}{8} \)

54. **PAINTING** Anne can paint a room in 6 hours. Oljay can paint a room in 4 hours. How long will it take them to paint the room working together?

EXAMPLE 9

Solve \(\frac{3}{x^2 + 3x} + \frac{x + 2}{x + 3} = \frac{1}{x} \).

\[\frac{3}{x^2 + 3x} + \frac{x + 2}{x + 3} = \frac{1}{x} \]

\[x(x + 3) \left(\frac{3}{x(x + 3)} \right) + x(x + 3) \left(\frac{x + 2}{x + 3} \right) = x(x + 3) \left(\frac{1}{x} \right) \]

\[3 + x(x + 2) = 1(x + 3) \]

\[3 + x^2 + 2x = x + 3 \]

\[x^2 + x = 0 \]

\[x(x + 1) = 0 \]

\[x = 0, x = -1 \]

The solution is \(-1\), and there is an extraneous solution of 0.
Determine whether each table represents an inverse variation. Explain.

1. \[
\begin{array}{c|c}
 x & y \\
 \hline
 2 & 10 \\
 4 & 12 \\
 8 & 14 \\
\end{array}
\]

2. \[
\begin{array}{c|c}
 x & y \\
 \hline
 2 & 2 \\
 4 & 1 \\
 8 & 1 \frac{1}{2} \\
\end{array}
\]

Find each product or quotient.

3. \[
\frac{(x + 6)(x - 2)}{x^3} \cdot \frac{7x^2}{x - 3}
\]

4. \[
\frac{(x + 3)}{y^2} \div \frac{x^2 - 9}{y}
\]

Solve. Assume that \(y \) varies inversely as \(x \).

5. If \(y = 3 \) when \(x = 9 \), find \(x \) when \(y = 1 \).

6. If \(y = 2 \) when \(x = 0.5 \), find \(y \) when \(x = 3 \).

Simplify each expression. State the excluded values of the variables.

7. \[
\frac{z - 6}{z^2 - 3z - 18}
\]

8. \[
\frac{4x - 28}{x^2 - 49}
\]

9. **MULTIPLE CHOICE** The area of a rectangle is \(x^2 + 5x + 6 \) square feet. If the width is \(x + 2 \), what is the length of the rectangle?

 A \(x + 2 \)

 B \(x + 3 \)

 C 1

 D 3

Simplify each expression.

10. \[
\frac{21}{3} \div \frac{3}{2}
\]

11. \[
\frac{x^2 - 25}{x - 2} \div \frac{x - 5}{x - 2}
\]

12. \[
\frac{a - 4}{a^2 + 6a + 8} \div \frac{a - 4}{a^2 - 3a - 4}
\]

13. \[
\frac{y^2 + 10y + 24}{y^2 - 9} \div \frac{3y^2 + 17y - 6}{2y^2 - 11y + 15}
\]

Find each quotient.

14. \[
(2x^2 + 10x) \div 2x
\]

15. \[
(4x^2 - 8x + 5) \div (2x + 1)
\]

16. \[
(3x^2 - 14x - 3) \div (x - 5)
\]

Assume that \(y \) varies inversely as \(x \). Write an inverse variation equation that relates \(x \) and \(y \).

17. \(y = 2 \) when \(x = 8 \)

18. \(y = -3 \) when \(x = 1 \)

Find each sum or difference.

19. \[
\frac{3}{x} + \frac{6}{x}
\]

20. \[
\frac{t - 5}{t - 6} + \frac{t + 8}{t - 6}
\]

21. \[
\frac{1}{x - 6} + \frac{3}{x - 2}
\]

22. \[
\frac{5}{x^2 - 2x - 24} + \frac{x}{x - 6}
\]

State the excluded value or values for each function.

23. \[
y = \frac{6}{x - 1}
\]

24. \[
y = \frac{5}{x^2 - 5x - 24}
\]

Identify the asymptotes of each function.

25. \[
y = \frac{2}{(x - 4)(x + 2)}
\]

26. \[
y = \frac{4}{x^2 + 3x - 28} + 2
\]

27. **MULTIPLE CHOICE** Lee can shovel the driveway in 3 hours, and Susan can shovel the driveway in 2 hours. How long will it take them working together?

 F 6 hours

 G 5 hours

 H \(\frac{6}{5} \) hour

 J 4 hours

28. **PAINTING** Sydney can paint a 60-square foot wall in 40 minutes. Working with her friend Cleveland, the two of them can paint the wall in 25 minutes. How long would it take Cleveland to do the job himself?
Model with an Equation

In order to successfully solve some standardized test questions, you will need to be able to write equations to model different situations. Use this lesson to practice solving these types of problems.

Strategies for Modeling with Equations

Step 1

Read the problem statement carefully.

Ask yourself:

- What am I being asked to solve?
- What information is given in the problem?
- What is the unknown quantity that I need to find?

Step 2

Translate the problem statement into an equation.

- Assign a variable to the unknown quantity.
- Write the word sentence as a mathematical number sentence.
- Look for keywords such as is, is the same as, is equal to, or is identical to that indicate where to place the equals sign.

Step 3

Solve the equation.

- Solve for the unknown in the equation.
- Check your answer to be sure it is reasonable and that it answers the question in the problem statement.

EXAMPLE

Read the problem. Identify what you need to know. Then use the information in the problem to solve.

It takes Craig 75 minutes to paint a small room. If Delsin can paint the same room in 60 minutes, how long would it take them to paint the room if they work together? Round to the nearest tenth.

A about 33.3 minutes
B about 38.4 minutes
C about 45.1 minutes
D about 50.3 minutes
Read each problem. Identify what you need to know. Then use the information in the problem to solve.

1. Hana can finish a puzzle in 6 hours, while Eric can finish one in 5 hours. How long would it take them to finish a puzzle together? Round to the nearest tenth.
 A. about 1.8 hours
 B. about 2.4 hours
 C. about 2.5 hours
 D. about 2.7 hours

2. Roberto wants to print 500 flyers for his landscaping business. His printer can complete the job in 35 minutes, and his brother’s printer can print them in 45 minutes. How long would it take to print the flyers using both printers? Round to the nearest whole minute.
 F. about 15 minutes
 G. about 18 minutes
 H. about 20 minutes
 J. about 23 minutes

Read the problem carefully. You know how long it takes Craig and Delsin to paint a room individually. Model the situation with an equation to find how long it would take them to paint the room if they work together.

Find the rate that each person works when painting individually.

Craig’s rate: \[\frac{1 \text{ job}}{75 \text{ minutes}} = \frac{1}{75} \text{ job per minute} \]

Delsin’s rate: \[\frac{1 \text{ job}}{60 \text{ minutes}} = \frac{1}{60} \text{ job per minute} \]

Let \(t \) represent the number of minutes it would take them to complete the job working together. Multiply each rate by the time \(t \) to represent the portion of the job done by each painter. Add these expressions and set them equal to 1 job. Then solve for \(t \).

\[
\text{Portion that Craig completes} \quad \frac{1}{75}t + \text{portion that Delsin completes} = 1 \text{ job.}
\]

Solve for \(t \):

Original equation

\[
300\left(\frac{1}{75}t + \frac{1}{60}t\right) = 1(300)
\]

Multiply each side by the LCD, 300.

Simplify.

Combine like terms.

Divide each side by 9.

So, it would take Craig and Delsin about 33.3 minutes to paint the room working together. The correct answer is A.
Multiple Choice

Read each problem. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. What is the inverse variation equation for the numbers shown in the table?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>16</td>
</tr>
<tr>
<td>-4</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>-64</td>
</tr>
<tr>
<td>8</td>
<td>-16</td>
</tr>
<tr>
<td>16</td>
<td>-8</td>
</tr>
</tbody>
</table>

A \(y = -2x \)
B \(y = 8x \)
C \(xy = 24 \)
D \(xy = -128 \)

2. Suppose a square has a side length given by the expression \(\frac{x + 5}{8x} \). What is the perimeter of the square?

F \(\frac{4x + 20}{5x} \)
G \(\frac{2x + 10}{x} \)
H \(\frac{x + 5}{4x} \)
J \(\frac{x + 5}{2x} \)

3. Find the distance between (3, -6) and (1, 4) on a coordinate grid. Round to the nearest tenth.

A 8.1
B 8.5
C 9.6
D 10.2

4. In 1985, the population of a country was about 3.66 million people. By 2005, this number had grown to about 4.04 million people. What was the annual rate of change in population from 1985 to 2005?

F about 15,000 people per year
G about 19,000 people per year
H about 24,000 people per year
J about 38,000 people per year

5. Ricky’s Rentals rented 12 more bicycles than scooters last weekend for a total revenue of $2,125. How many scooters were rented?

<table>
<thead>
<tr>
<th>Item</th>
<th>Rental Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle</td>
<td>$20</td>
</tr>
<tr>
<td>Scooter</td>
<td>$45</td>
</tr>
</tbody>
</table>

A 26
B 29
C 37
D 41

6. The table shows the relationship between calories and fat grams contained in orders of french fries from various restaurants.

<table>
<thead>
<tr>
<th>Calories</th>
<th>Fat Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>14</td>
</tr>
<tr>
<td>280</td>
<td>15</td>
</tr>
<tr>
<td>310</td>
<td>16</td>
</tr>
<tr>
<td>260</td>
<td>12</td>
</tr>
<tr>
<td>340</td>
<td>16</td>
</tr>
<tr>
<td>350</td>
<td>18</td>
</tr>
<tr>
<td>300</td>
<td>13</td>
</tr>
</tbody>
</table>

Assuming the data can best be described by a linear model, how many fat grams would be expected to be contained in a 315-calorie order of french fries?

F 15 fat grams
G 16 fat grams
H 17 fat grams
J 18 fat grams

Test-TakingTip

Question 2: Sometimes you can eliminate answer choices as unreasonable because they are not in the proper form. Choices A and B show direct variation equations, so they can be eliminated.
Short Response/Gridded Response

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

7. Suppose the first term of a geometric sequence is 3 and the fourth term is 192.
 a. What is the common ratio of the sequence?
 b. Write an equation that can be used to find the \(n \)th term of the sequence.
 c. What is the sixth term of the sequence?

8. **GRIDDED RESPONSE** Peggy is having a cement walkway installed around the perimeter of her swimming pool with the dimensions shown below. Write an expression for the total area of the pool and the walkway. Then evaluate the expression for \(x = 3 \) to find the area, in square feet, of the pool and walkway.

9. Use the equation \(y = 2(4 + x) \) to answer each question.
 a. Complete the following table for the different values of \(x \).
 b. Plot the points from the table on a coordinate grid. What do you notice about the points?

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

10. Jason received a $50 gift certificate for his birthday. He wants to buy a DVD and a poster from a media store. (Assume that sales tax is included in the prices.) Write and solve a linear inequality to show how much he would have left to spend after making these purchases.

 Weekend Blowout Sale
 * All DVDs only $14.95
 * All CDs only $11.25
 * All posters only $10.99

11. Simplify the complex fraction. Show your work.

\[
\frac{5}{x - 3} \div \frac{x - 6}{x^2 - x - 6}
\]

Extended Response

Record your answers on a sheet of paper. Show your work.

12. Carl’s father is building a tool chest that is shaped like a rectangular prism. He wants the tool chest to have a volume of 30 cubic feet. The height of the chest will be 1 foot shorter than the width. The length will be 3 feet longer than the height.
 a. Sketch a model to represent the problem.
 b. Write a polynomial that represents the volume of the tool chest.
 c. What are the dimensions of the tool chest?